Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 190129 by yaslm last updated on 27/Mar/23

Answered by ARUNG_Brandon_MBU last updated on 28/Mar/23

Let P_n  be the statement 3∣ n^3 +2n ∀n≥1  P_n  is true for n=1 , n=2  Suppose P_n  true for n and prove that   it′s also true for n+1.  P_(n+1) =(n+1)^3 +2(n+1)            =n^3 +3n^2 +3n+1+2n+2            =(n^3 +2n)+(3n^2 +3n+3)            =(n^3 +2n)+3(n^2 +n+1)  3∣(n^3 +2n) from hypothesis and 3∣3(n^2 +n+1)  thus P_(n+1)  is true.

LetPnbethestatement3n3+2nn1Pnistrueforn=1,n=2SupposePntruefornandprovethatitsalsotrueforn+1.Pn+1=(n+1)3+2(n+1)=n3+3n2+3n+1+2n+2=(n3+2n)+(3n2+3n+3)=(n3+2n)+3(n2+n+1)3(n3+2n)fromhypothesisand33(n2+n+1)thusPn+1istrue.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com