Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 190324 by Shrinava last updated on 31/Mar/23

Commented by senestro last updated on 01/Apr/23

how can we solve it?

howcanwesolveit?

Answered by witcher3 last updated on 01/Apr/23

S=Π_(k=1) ^(4n+2) (1/2)(e^(4i((πk)/(4n+3))) +1).e^(−((2π)/(4n+3))(((4n+3)/2)(4n+1)))   =(1/2^(4n+2) )Π_(t∈S_k ) (1+t^2 ),s_k ={e^((2iπk)/(4n+3)) ,k∈{0,4n+2}}  Z^(4n+3) =1⇔z∈S_k   Z^(8n+6) −1=(1/(16^n .4 ))Π_(t∈S_k −{0}) (Z^2 −t^2 )⇔((Z^(8n+6) −1)/(z^2 −1))=P(z)  Π_(k=1) ^(4n+2) (e^((4ikπ)/(4n+3)) +1)=P(i)=1  S=(1/(16^n .4))  ⇒Ω=(1/4)

S=4n+2k=112(e4iπk4n+3+1).e2π4n+3(4n+32(4n+1))=124n+2tSk(1+t2),sk={e2iπk4n+3,k{0,4n+2}}Z4n+3=1zSkZ8n+61=116n.4tSk{0}(Z2t2)Z8n+61z21=P(z)4n+2k=1(e4ikπ4n+3+1)=P(i)=1S=116n.4Ω=14

Commented by Shrinava last updated on 03/Apr/23

thank you dear professor

thankyoudearprofessor

Commented by witcher3 last updated on 05/Apr/23

withe Pleasur God bless You

withePleasurGodblessYou

Terms of Service

Privacy Policy

Contact: info@tinkutara.com