Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 19055 by Tinkutara last updated on 03/Aug/17

Find the cubic equation whose roots  are the radius of three escribed circles  in term of inradius, circumradius and  semiperimeter.

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{cubic}\:\mathrm{equation}\:\mathrm{whose}\:\mathrm{roots} \\ $$$$\mathrm{are}\:\mathrm{the}\:\mathrm{radius}\:\mathrm{of}\:\mathrm{three}\:\mathrm{escribed}\:\mathrm{circles} \\ $$$$\mathrm{in}\:\mathrm{term}\:\mathrm{of}\:\mathrm{inradius},\:\mathrm{circumradius}\:\mathrm{and} \\ $$$$\mathrm{semiperimeter}. \\ $$

Answered by behi.8.3.4.1.7@gmail.com last updated on 05/Aug/17

(x−r_a )(x−r_b )(x−r_c )=0  ⇒x^3 −(Σr_a )x^2 +(Σr_a r_b )x−Πr_a =0  1)A+B=π−C⇒tg(((A+B)/2))=tg((π/2)−(C/2))  ⇒((tg(A/2)+tg(B/2))/(1−tg(A/2)tg(B/2)))=(1/(tg(C/2)))⇒Σtg(A/2)tg(B/2)=1  2)Πtg(A/2)=(√((((p−b)(p−c))/(p(p−a))).(((p−a)(p−c))/(p(p−b))).(((p−a)(p−b))/(p(p−c)))))=  =(√((p(p−a)(p−b)(p−c))/p^4 ))=(S/p^2 )=(r/p)  3)Σtg(A/2)=Σ(((p−b)(p−c))/S)=((p^2 −p(b+c)+bc)/S)+  +((p^2 −p(a+c)+ac)/S)+((p^2 −p(a+b)+ab)/S)=  =((3p^2 −2p(a+b+c)+ab+bc+ca)/S)=  =((ab+bc+ca−p^2 )/S)=((4Rr+r^2 )/S)=((4R+r)/p)  4)r_a =p.tg(A/2)⇒ { ((Σr_a =pΣtg(A/2)=p.((4R+r)/p)=4R+r)),((Σr_a r_b =p^2 Σtg(A/2)tg(B/2)=p^2 )) :}  5)Πr_a =p^3 .Πtg(A/2)=p^3 .(r/p)=r.p^2   ⇒x^3 −(4R+r)x^2 +p^2 .x−r.p^2 =0

$$\left({x}−{r}_{{a}} \right)\left({x}−{r}_{{b}} \right)\left({x}−{r}_{{c}} \right)=\mathrm{0} \\ $$$$\Rightarrow{x}^{\mathrm{3}} −\left(\Sigma{r}_{{a}} \right){x}^{\mathrm{2}} +\left(\Sigma{r}_{{a}} {r}_{{b}} \right){x}−\Pi{r}_{{a}} =\mathrm{0} \\ $$$$\left.\mathrm{1}\right){A}+{B}=\pi−{C}\Rightarrow{tg}\left(\frac{{A}+{B}}{\mathrm{2}}\right)={tg}\left(\frac{\pi}{\mathrm{2}}−\frac{{C}}{\mathrm{2}}\right) \\ $$$$\Rightarrow\frac{{tg}\frac{{A}}{\mathrm{2}}+{tg}\frac{{B}}{\mathrm{2}}}{\mathrm{1}−{tg}\frac{{A}}{\mathrm{2}}{tg}\frac{{B}}{\mathrm{2}}}=\frac{\mathrm{1}}{{tg}\frac{{C}}{\mathrm{2}}}\Rightarrow\Sigma{tg}\frac{{A}}{\mathrm{2}}{tg}\frac{{B}}{\mathrm{2}}=\mathrm{1} \\ $$$$\left.\mathrm{2}\right)\Pi{tg}\frac{{A}}{\mathrm{2}}=\sqrt{\frac{\left({p}−{b}\right)\left({p}−{c}\right)}{{p}\left({p}−{a}\right)}.\frac{\left({p}−{a}\right)\left({p}−{c}\right)}{{p}\left({p}−{b}\right)}.\frac{\left({p}−{a}\right)\left({p}−{b}\right)}{{p}\left({p}−{c}\right)}}= \\ $$$$=\sqrt{\frac{{p}\left({p}−{a}\right)\left({p}−{b}\right)\left({p}−{c}\right)}{{p}^{\mathrm{4}} }}=\frac{{S}}{{p}^{\mathrm{2}} }=\frac{{r}}{{p}} \\ $$$$\left.\mathrm{3}\right)\Sigma{tg}\frac{{A}}{\mathrm{2}}=\Sigma\frac{\left({p}−{b}\right)\left({p}−{c}\right)}{{S}}=\frac{{p}^{\mathrm{2}} −{p}\left({b}+{c}\right)+{bc}}{{S}}+ \\ $$$$+\frac{{p}^{\mathrm{2}} −{p}\left({a}+{c}\right)+{ac}}{{S}}+\frac{{p}^{\mathrm{2}} −{p}\left({a}+{b}\right)+{ab}}{{S}}= \\ $$$$=\frac{\mathrm{3}{p}^{\mathrm{2}} −\mathrm{2}{p}\left({a}+{b}+{c}\right)+{ab}+{bc}+{ca}}{{S}}= \\ $$$$=\frac{{ab}+{bc}+{ca}−{p}^{\mathrm{2}} }{{S}}=\frac{\mathrm{4}{Rr}+{r}^{\mathrm{2}} }{{S}}=\frac{\mathrm{4}{R}+{r}}{{p}} \\ $$$$\left.\mathrm{4}\right){r}_{{a}} ={p}.{tg}\frac{{A}}{\mathrm{2}}\Rightarrow\begin{cases}{\Sigma{r}_{{a}} ={p}\Sigma{tg}\frac{{A}}{\mathrm{2}}={p}.\frac{\mathrm{4}{R}+{r}}{{p}}=\mathrm{4}{R}+{r}}\\{\Sigma{r}_{{a}} {r}_{{b}} ={p}^{\mathrm{2}} \Sigma{tg}\frac{{A}}{\mathrm{2}}{tg}\frac{{B}}{\mathrm{2}}={p}^{\mathrm{2}} }\end{cases} \\ $$$$\left.\mathrm{5}\right)\Pi{r}_{{a}} ={p}^{\mathrm{3}} .\Pi{tg}\frac{{A}}{\mathrm{2}}={p}^{\mathrm{3}} .\frac{{r}}{{p}}={r}.{p}^{\mathrm{2}} \\ $$$$\Rightarrow\boldsymbol{{x}}^{\mathrm{3}} −\left(\mathrm{4}\boldsymbol{{R}}+\boldsymbol{{r}}\right)\boldsymbol{{x}}^{\mathrm{2}} +\boldsymbol{{p}}^{\mathrm{2}} .\boldsymbol{{x}}−\boldsymbol{{r}}.\boldsymbol{{p}}^{\mathrm{2}} =\mathrm{0} \\ $$

Commented by Tinkutara last updated on 05/Aug/17

Thank you very much Sir!

$$\mathrm{Thank}\:\mathrm{you}\:\mathrm{very}\:\mathrm{much}\:\mathrm{Sir}! \\ $$

Commented by behi.8.3.4.1.7@gmail.com last updated on 05/Aug/17

corrected!

$${corrected}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com