Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 190700 by Rupesh123 last updated on 09/Apr/23

Answered by 07049753053 last updated on 09/Apr/23

∫_0 ^∞ ((sin(x)ln(x))/x)dx  (d/da)∣_(a=1) ∫_0 ^∞ ((sin(x)x^a )/x)dx=(d/da)∣_(a=1) ∫_0 ^∞ sin(x)x^(a−1) dx  from euler formula  e^(−ix) =cos(x)+sin(x)  sin(x)=Im(e^(−ix) )  (d/da)∣_(a=1) Im∫_0 ^∞ e^(−ix) x^(a−1) dx  let ix=u x=(u/i) dx=(du/i)  (d/da)∣_(a=1 ) Im∫_0 ^∞ e^(−u) ((u/i))^(a−1) (du/i)  (d/da)∣_(a=1)  Im((1/i^a ))∫_0 ^∞ e^(−u) u^(a−1) du  (d/da)∣_(a=1)  Im((1/i^a ))∫_0 ^∞ e^(−u) u^((a−1+1)−1) du  (d/da)∣_(a=1)  Im(((𝚪(a))/i^a ))=−(d/da)∣_(a=1) (−𝚪(a)sin(((𝛑a)/2)))=−(1/2)𝚪(a)(𝛑cos(((𝛑a)/2))+2sin(((𝛑a)/2))𝛙(a))∣_(a=1)   −(1/2)𝚪(1)(𝛑cos((𝛑/2))+2𝛑sin((𝛑/2))𝛙(1))=−((𝛄𝛑)/2)

0sin(x)ln(x)xdxddaa=10sin(x)xaxdx=ddaa=10sin(x)xa1dxfromeulerformulaeix=cos(x)+sin(x)sin(x)=Im(eix)ddaa=1Im0eixxa1dxletix=ux=uidx=duiddaa=1Im0eu(ui)a1duiddaa=1Im(1ia)0euua1duddaa=1Im(1ia)0euu(a1+1)1duddaa=1Im(Γ(a)ia)=ddaa=1(Γ(a)sin(πa2))=12Γ(a)(πcos(πa2)+2sin(πa2)ψ(a))a=112Γ(1)(πcos(π2)+2πsin(π2)ψ(1))=γπ2

Terms of Service

Privacy Policy

Contact: info@tinkutara.com