All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 190700 by Rupesh123 last updated on 09/Apr/23
Answered by 07049753053 last updated on 09/Apr/23
∫0∞sin(x)ln(x)xdxdda∣a=1∫0∞sin(x)xaxdx=dda∣a=1∫0∞sin(x)xa−1dxfromeulerformulae−ix=cos(x)+sin(x)sin(x)=Im(e−ix)dda∣a=1Im∫0∞e−ixxa−1dxletix=ux=uidx=duidda∣a=1Im∫0∞e−u(ui)a−1duidda∣a=1Im(1ia)∫0∞e−uua−1dudda∣a=1Im(1ia)∫0∞e−uu(a−1+1)−1dudda∣a=1Im(Γ(a)ia)=−dda∣a=1(−Γ(a)sin(πa2))=−12Γ(a)(πcos(πa2)+2sin(πa2)ψ(a))∣a=1−12Γ(1)(πcos(π2)+2πsin(π2)ψ(1))=−γπ2
Terms of Service
Privacy Policy
Contact: info@tinkutara.com