Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 19083 by mondodotto@gmail.com last updated on 04/Aug/17

Commented by ajfour last updated on 04/Aug/17

something wrong with the question !

somethingwrongwiththequestion!

Commented by mondodotto@gmail.com last updated on 04/Aug/17

nothing wrong

nothingwrong

Commented by prakash jain last updated on 04/Aug/17

(2+ax)^n =n^2 +224x+1176x^2 +..  expression is true for all x  x=0  n^2 =2^n   n=2,4  n2^(n−1) ax=224x  2∙2^1 a=224⇒a=56  4.2^3 a=224⇒a=7  n=2  (1/2)n(n−1).2^(n−2) a^2 =56^2 =3136  n=4  6×2^2 ×49=2352=1176  n=4,a=7

(2+ax)n=n2+224x+1176x2+..expressionistrueforallxx=0n2=2nn=2,4n2n1ax=224x221a=224a=564.23a=224a=7n=212n(n1).2n2a2=562=3136n=46×22×49=2352=1176n=4,a=7

Commented by prakash jain last updated on 04/Aug/17

question probably should be  n^2 +n+1=a((√n)+1)

questionprobablyshouldben2+n+1=a(n+1)

Answered by ajfour last updated on 04/Aug/17

(2+ax)^n =2^n +n(2^(n−1) )(ax)             +((n(n−1))/2)(2^(n−2) )(a^2 x^2 )+....  and it is given that  (2+ax)^n =n^2 +224x+1176x^2 +...  comparing   ((coefficient of x^0 )/(coefficient of x))  (2^n /(na2^(n−1) ))=(n^2 /(224))   ⇒ 2×224=n^3 a            or    n^3 a=448     ...(i)  comparing   ((coefficient of x)/(coefficient of x^2 ))  ((na(2^(n−1) ))/({((na^2 (n−1)2^(n−2) )/2)}))=((224)/(1176))  ⇒    (4/((n−1)a)) = (4/(21))    ⇒    (n−1)a=21    ....(ii)  dividing (i) by (ii) yields      (n^3 /(n−1)) = ((448)/(21)) = ((64)/3)  or        3n^3 =(n−1)(64)       ⇒     n=4    using eqn. (ii) we find                 a=7  So,     n^2 +n+a=16+4+7=27  while    a((√n)+1) = 7(2+1)=21 .   something is wrong...

(2+ax)n=2n+n(2n1)(ax)+n(n1)2(2n2)(a2x2)+....anditisgiventhat(2+ax)n=n2+224x+1176x2+...comparingcoefficientofx0coefficientofx2nna2n1=n22242×224=n3aorn3a=448...(i)comparingcoefficientofxcoefficientofx2na(2n1){na2(n1)2n22}=22411764(n1)a=421(n1)a=21....(ii)dividing(i)by(ii)yieldsn3n1=44821=643or3n3=(n1)(64)n=4usingeqn.(ii)wefinda=7So,n2+n+a=16+4+7=27whilea(n+1)=7(2+1)=21.somethingiswrong...

Commented by mondodotto@gmail.com last updated on 04/Aug/17

why 2^(n−1)  and 2^(n−2)  in your first step please recheck

why2n1and2n2inyourfirststeppleaserecheck

Commented by ajfour last updated on 04/Aug/17

binomial theorem  (x+y)^n =x^n +nx^(n−1) y+((n(n−1))/2)x^(n−2) y^2 +...                            .....+nxy^(n−1) +y^n  .

binomialtheorem(x+y)n=xn+nxn1y+n(n1)2xn2y2+........+nxyn1+yn.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com