All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 191303 by Mingma last updated on 22/Apr/23
Answered by mahdipoor last updated on 22/Apr/23
∫f(x)=∫xf′(x)−2x−x2=[xf(x)−∫f(x)]−∫2x−x2⇒∫01f(x)=12[xf(x)]01−∫012x−x2=0−∫012x−x2
Answered by cortano12 last updated on 22/Apr/23
⇒xdf(x)dx=f(x)+2x−x2⇒xdf(x)=f(x)dx+−(x2−2x+1)+1dx⇒∫10xdf(x)=∫10f(x)dx+∫101−(x−1)2dx⇒[xf(x)]01−∫10f(x)dx=∫10f(x)dx+∫101−(x−1)2dx⇒−2∫10f(x)dx=π4⇒∴∫10f(x)dx=−π8
Terms of Service
Privacy Policy
Contact: info@tinkutara.com