All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 191342 by mnjuly1970 last updated on 23/Apr/23
calculate...Ω={∫0π4(1+3sin(x)+cos(x))ndx}1n=?
Answered by witcher3 last updated on 24/Apr/23
∫(1+3sin(x)+cos(x))ndx3sin(x)+cos(x)=2sin(x+π6),y=x+π6=g(x)⇔∫(1+2sin(y))ndy=letw=sin(y)⇔∫(1+2w)n1−w2dw,t=1+2w⇒w=t−12=∫tn(1−(t−12)2,dt2=12∫tn(3−t2)−12(t+12)−12dtletF(s)=12∫0stn(3−t2)−12(t+12)−12dtt=sz⇒dt=sdzf(s)=13sn+1∫01zn(1−sz3)−12(1+sz)−12dzWehaveF1(a;b,c;d;x;y).Γ(a)Γ(d−a)Γ(d)=∫01ua−1(1−u)d−a−1(1−ux)−b(1−uy)−cduHypergeomtricFunctiomofTwovariablef(s)=sn+13.Γ(n+1)Γ(1)Γ(n+2).F1(n+1;12,12;n+2;s3;−s)g(x)=(1+3sin(x)+cos(x))n+1(n+1)3F1(n+1;12,12;n+2;−2sin(x+π6)−1;13(2sin(x+π6)+1))+c∫0π4(1+3sin(x)+cos(x))ndx=g(π4)−g(0)longexpression=1(n+1)3{(2+3+1)n+1F1(n+1;12,12;n+2;−(1+3+2);1+3+23)−2n+1F1(n+1;12,12;n+2;−2,23)}
Terms of Service
Privacy Policy
Contact: info@tinkutara.com