Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 191342 by mnjuly1970 last updated on 23/Apr/23

      calculate...   Ω ={ ∫_0 ^( (π/4)) (  1 + (√3) sin(x) + cos(x) )^( n) dx}^(1/n) = ?

calculate...Ω={0π4(1+3sin(x)+cos(x))ndx}1n=?

Answered by witcher3 last updated on 24/Apr/23

∫(1+(√3)sin(x)+cos(x))^n dx  (√3)sin(x)+cos(x)=2sin(x+(π/6)),y=x+(π/6)=g(x)  ⇔∫(1+2sin(y))^n dy=  let w=sin(y)  ⇔∫(((1+2w)^n )/( (√(1−w^2 ))))dw,t=1+2w⇒w=((t−1)/2)  =∫(t^n /( (√((1−(((t−1)/2))^2 )))),(dt/2)  =(1/2)∫t^n (((3−t)/2))^(−(1/2)) (((t+1)/2))^(−(1/2)) dt  let F(s)=(1/2)∫_0 ^s t^n (((3−t)/2))^(−(1/2)) (((t+1)/2))^(−(1/2)) dt  t=sz⇒dt=sdz  f(s)=(1/( (√3)))s^(n+1) ∫_0 ^1 z^n (1−((sz)/3))^(−(1/2)) (1+sz)^(−(1/2)) dz  We have  F_1 (a;b,c;d;x;y).((Γ(a)Γ(d−a))/(Γ(d)))=∫_0 ^1 u^(a−1) (1−u)^(d−a−1) (1−ux)^(−b) (1−uy)^(−c) du  Hypergeomtric Functiom of Two variable  f(s)=(s^(n+1) /( (√3))).((Γ(n+1)Γ(1))/(Γ(n+2))).F_1 (n+1;(1/2),(1/2);n+2;(s/3);−s)  g(x)=(((1+(√3)sin(x)+cos(x))^(n+1) )/((n+1)(√3)))F_1 (n+1;(1/2),(1/2);n+2;−2sin(x+(π/6))−1;(1/3)(2sin(x+(π/6))+1))+c  ∫_0 ^(π/4) (1+(√3)sin(x)+cos(x))^n dx=g((π/4))−g(0)  long expression  =(1/((n+1)(√3))){((√(2+(√3)))+1)^(n+1) F_1 (n+1;(1/2),(1/2);n+2;−(1+(√((√3)+2)));((1+(√((√3)+2)))/3))  −2^(n+1) F_1 (n+1;(1/2),(1/2);n+2;−2,(2/3))}

(1+3sin(x)+cos(x))ndx3sin(x)+cos(x)=2sin(x+π6),y=x+π6=g(x)(1+2sin(y))ndy=letw=sin(y)(1+2w)n1w2dw,t=1+2ww=t12=tn(1(t12)2,dt2=12tn(3t2)12(t+12)12dtletF(s)=120stn(3t2)12(t+12)12dtt=szdt=sdzf(s)=13sn+101zn(1sz3)12(1+sz)12dzWehaveF1(a;b,c;d;x;y).Γ(a)Γ(da)Γ(d)=01ua1(1u)da1(1ux)b(1uy)cduHypergeomtricFunctiomofTwovariablef(s)=sn+13.Γ(n+1)Γ(1)Γ(n+2).F1(n+1;12,12;n+2;s3;s)g(x)=(1+3sin(x)+cos(x))n+1(n+1)3F1(n+1;12,12;n+2;2sin(x+π6)1;13(2sin(x+π6)+1))+c0π4(1+3sin(x)+cos(x))ndx=g(π4)g(0)longexpression=1(n+1)3{(2+3+1)n+1F1(n+1;12,12;n+2;(1+3+2);1+3+23)2n+1F1(n+1;12,12;n+2;2,23)}

Terms of Service

Privacy Policy

Contact: info@tinkutara.com