All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 191369 by mnjuly1970 last updated on 23/Apr/23
calculateΟ=ββn=1sin(nΟ3)(2n+1)2=?
Answered by namphamduc last updated on 24/Apr/23
S=ββn=1sin(nΟ3)(2n+1)2=βββn=1(eiΟ3)n(2n+1)2tanhβ1(x)=ββn=0x2n+12n+1βtanhβ1(x)x=ββn=0x2n2n+1βtanhβ1(x)xβ1=ββn=1x2n2n+1βββn=1x2n(2n+1)2=12x(Li2(x)βLi2(βx))β1βS=β(12eiΟ6(Li2(eiΟ6)βLi2(βeiΟ6)))=β(1(3+i)(Ο26+i43G))=β(14(3βi)(Ο26+i43G))=βΟ224+G3
Commented by mnjuly1970 last updated on 24/Apr/23
Terms of Service
Privacy Policy
Contact: info@tinkutara.com