Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 191455 by Mingma last updated on 24/Apr/23

Answered by a.lgnaoui last updated on 25/Apr/23

 △ANB   BM⊥AN  et ∡MBA=∡MBN   ⇒AB=BN=(x/(cos 𝛉))        (1)   △PNC      PC=3cm   BM∣∣ NP  ⇒ ∡ PNC=∡MBN=θ=∡PCN   ⇒NP=PC=3   NC=2PCcos θ=6cos θ   △ABC   ∡ABN=2θ   BC^2 =AC^2 +AB^2 +2AC×ABcos 3θ      BC^2         =100+(x^2 /(cos^2 𝛉))+((20x)/(cos 𝛉))cos 3θ (2)    Calcul  de BC:    BC=BN+NC=(x/(cos θ))+6cos θ  ⇒BC^2 =(x^2 /(cos^2 𝛉))+36cos^2 𝛉+12x       (3)  (2)=(3)⇒ ((20xcos 3θ)/(cos θ))+100=36cos^2 θ+12x  ((20x(4cos^2 θ−3)cos θ)/(cos θ))+100−12x−36cos^2 θ=0  [20(4cos^2 θ−3)−12]x=36cos^2 θ −100  [5(4cos^2 θ−3)−3]x=9cos^2 θ−25        x=((9cos^2 𝛉−25)/(20cos^2 𝛉−15))          (4)  △ANC    AN=2MN=2xtan θ    AC^2 =AN^2 +NC^2 −2AN×NCcos ((π/2)+θ)  ⇒100=4x^2 tan^2 θ+36cos^2 θ+                 4xtan θ×6cos θsin θ       =4x^2 tan^2 θ+36cos^2 θ+24xsin^2 θ  25=x^2 tan^2 θ+6xsin^2 θ+9cos^2 θ  25cos^2 θ=x^2 sin^2 θ+x6sin^2 θcos^2 θ+9cos^4 θ    x^2 +6xcos^2 θ+ (9/((1−cos ^2 θ)))cos^4 θ−25(((cos^2 θ)/(1−cos^2 θ)))=0  (5)    (4)⇔(20cos^2 θ−15)x=9cos^2 θ−25         ⇒  (20x−9)cos^2 𝛉 =15x−25                 cos^2 θ=((5(3x−5))/(20x−9))       x^2 +6×((5(3x−5))/(20x−9))+((9(((5(3x−5))/(20x−9)))^2 )/(1−((5(3x−5))/((20x−9)))))  −25×(((5(3x−5))/(20x−9))/(((20x−9)−5(3x−5))/(20x−9)))  ⇔ x^2 +((30(3x−5))/(20x−9))+((25×9(3x−5)^2 )/((20x−9)(5x+16)))       −((25×5(3x−5))/(5x+16))  x^2 (20x−9)(5x+16)+30(3x−5)(5x+16)  +225(3x−5)^2 −125(3x−5)(20x−9)=0    x^2 (100x^2 +275x−144)+30(15x^2 +13x−80)  +225(9x^2 −30x+25)−125(60x^2 −127x+45)    100x^4 +275x^3 −5269x^2 +9515x−2400=0       Resolution d equation donne     valeur accepte      x=4,513 cm

ANBBMANetMBA=MBNAB=BN=xcosθ(1)PNCPC=3cmBM∣∣NPPNC=MBN=θ=PCNNP=PC=3NC=2PCcosθ=6cosθABCABN=2θBC2=AC2+AB2+2AC×ABcos3θBC2=100+x2cos2θ+20xcosθcos3θ(2)CalculdeBC:BC=BN+NC=xcosθ+6cosθBC2=x2cos2θ+36cos2θ+12x(3)(2)=(3)20xcos3θcosθ+100=36cos2θ+12x20x(4cos2θ3)cosθcosθ+10012x36cos2θ=0[20(4cos2θ3)12]x=36cos2θ100[5(4cos2θ3)3]x=9cos2θ25x=9cos2θ2520cos2θ15(4)ANCAN=2MN=2xtanθAC2=AN2+NC22AN×NCcos(π2+θ)100=4x2tan2θ+36cos2θ+4xtanθ×6cosθsinθ=4x2tan2θ+36cos2θ+24xsin2θ25=x2tan2θ+6xsin2θ+9cos2θ25cos2θ=x2sin2θ+x6sin2θcos2θ+9cos4θx2+6xcos2θ+9(1cos2θ)cos4θ25(cos2θ1cos2θ)=0(5)(4)(20cos2θ15)x=9cos2θ25(20x9)cos2θ=15x25cos2θ=5(3x5)20x9x2+6×5(3x5)20x9+9(5(3x5)20x9)215(3x5)(20x9)25×5(3x5)20x9(20x9)5(3x5)20x9x2+30(3x5)20x9+25×9(3x5)2(20x9)(5x+16)25×5(3x5)5x+16x2(20x9)(5x+16)+30(3x5)(5x+16)+225(3x5)2125(3x5)(20x9)=0x2(100x2+275x144)+30(15x2+13x80)+225(9x230x+25)125(60x2127x+45)100x4+275x35269x2+9515x2400=0Resolutiondequationdonnevaleuracceptex=4,513cm

Commented by mr W last updated on 25/Apr/23

wrong!

wrong!

Answered by mr W last updated on 25/Apr/23

Commented by Mingma last updated on 26/Apr/23

Excellent, sir!

Commented by mr W last updated on 25/Apr/23

NP=PC=3  MQ=((NP)/2)=1.5  QP=((AP)/2)=3.5  BQ=QC  x+1.5=3.5+3  ⇒x=5 ✓

NP=PC=3MQ=NP2=1.5QP=AP2=3.5BQ=QCx+1.5=3.5+3x=5

Terms of Service

Privacy Policy

Contact: info@tinkutara.com