Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 191474 by Spillover last updated on 24/Apr/23

If A+B+C=π  Prove that  cos 2A+cos 2B+cos2C+1=−4cosAcos Bcos C

IfA+B+C=πProvethatcos2A+cos2B+cos2C+1=4cosAcosBcosC

Commented by Tinku Tara last updated on 24/Apr/23

You probably need precondition  that A+B+C=π

YouprobablyneedpreconditionthatA+B+C=π

Answered by Spillover last updated on 25/Apr/23

2cos(A+B)cos (A−B)+2cos^2 C−1+1    A+B+C=π   A+B=π−C  2cos (π−C)cos (A−B)+2cos^2 C  2cos Ccos (A−B)+2cos^2 C  2cos C[cos (A−B)−cos C]  C=π−(A+B)  −2cos C[cos(A+B)+cos (A−B)]  −2cos C[2cosAcos B]  −4cos CcosAcos B

2cos(A+B)cos(AB)+2cos2C1+1A+B+C=πA+B=πC2cos(πC)cos(AB)+2cos2C2cosCcos(AB)+2cos2C2cosC[cos(AB)cosC]C=π(A+B)2cosC[cos(A+B)+cos(AB)]2cosC[2cosAcosB]4cosCcosAcosB

Terms of Service

Privacy Policy

Contact: info@tinkutara.com