Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 95848 by john santu last updated on 28/May/20

∫_0 ^(π/2)  (dx/(√(1+sin x))) ?

π20dx1+sinx?

Answered by bobhans last updated on 28/May/20

∫_0 ^(π/2)  (dx/(√((sin (x/2)+cos (x/2))^2 ))) = ∫_0 ^(π/2)  (dx/((√2) cos ((x/2)−(π/4))))   set (x/2)−(π/4) = t ⇒ dx = 2 dt   ∫_(−(π/4)) ^0 ((2 dt)/((√(2 )) cos t)) =(√2)  [ln ∣sec t + tan t ∣] _(−(π/4))^(  0)   =(√2)  ln ∣((1+sin t)/(cos t))∣ _(−(π/4)) ^0  = (√2) (0−ln((√2)−1)  = (√2) ln((1/((√2)−1))) = (√2) ln ((√2)+1)

π20dx(sinx2+cosx2)2=π20dx2cos(x2π4)setx2π4=tdx=2dt0π42dt2cost=2[lnsect+tant]π40=2ln1+sintcost0π4=2(0ln(21)=2ln(121)=2ln(2+1)

Answered by john santu last updated on 28/May/20

let x = (π/2)−t ⇒ { ((x=0 ,t=(π/2))),((x=(π/2),t=0)) :}  ∫_(π/2) ^0  ((−dt)/(√(1+cos t))) = ∫_0 ^(π/2)  (dt/(√(2cos^2 ((t/2)))))   = (1/(√2)) ∫_0 ^(π/2)  sec ((t/2)) dt = (√2) ∫_0 ^(π/2)  sec ((t/2)) d((t/2))  = (√2) ln ∣sec ((t/2))+tan ((t/2))∣_0 ^(π/2)   =(√(2 ()) ln((√2) + 1) −ln(1))  = (√2) ln ((√2) + 1 )

letx=π2t{x=0,t=π2x=π2,t=00π2dt1+cost=π20dt2cos2(t2)=12π20sec(t2)dt=2π20sec(t2)d(t2)=2lnsec(t2)+tan(t2)0π2=2(ln(2+1)ln(1))=2ln(2+1)

Answered by 1549442205 last updated on 28/May/20

putting (√(1+sinx))=t⇒t^2 =1+sinx  ⇒2tdt=cosxdx=(√(1−(t^2 −1)^2 ))dx  =t(√(2−t^2   ))dx.Hence,F(x)=∫((2dt)/(t(√(2−t^2 ))))  putting (√(2−t^2 ))=u⇒((−t)/(√(2−t^2 )))dt=du⇒−tdt=udu  F=∫((−2du)/(2−u^2 ))=∫((2du)/(u^2 −((√2))^2 ))=(1/(√2))ln∣((u−(√2))/(u+(√2)))∣  (1/(√2))ln∣(((√(1−sinx ))−(√2))/((√(1−sin x)) +(√2)))∣+C.Hence,  I=F((π/2))−F(0)=0−(1/(√2))ln(((√2)−1)/((√2)+1))  =−(√2)ln((√2)−1)=(√2)ln((√2)+1)

putting1+sinx=tt2=1+sinx2tdt=cosxdx=1(t21)2dx=t2t2dx.Hence,F(x)=2dtt2t2putting2t2=ut2t2dt=dutdt=uduF=2du2u2=2duu2(2)2=12lnu2u+212ln1sinx21sinx+2+C.Hence,I=F(π2)F(0)=012ln212+1=2ln(21)=2ln(2+1)

Commented by john santu last updated on 28/May/20

oo you change it

ooyouchangeit

Answered by mathmax by abdo last updated on 28/May/20

I =∫_0 ^(π/2)  (dx/(√(1+sinx))) ⇒I =∫_0 ^(π/2)  (dx/(√(cos^2 ((x/2))+sin^2 ((x/2)) +sin((x/2))cos((x/2)))))  =∫_0 ^(π/2)  (dx/(√((cos((x/2))+sin((x/2)))^2 ))) =∫_0 ^(π/2)  (dx/(cos((x/2))+sin((x/2)))) =_((x/2)=t)   ∫_0 ^(π/4)  ((2dt)/(cost +sint))  =_(tan((t/2))=u)      ∫_0 ^((√2)−1)  ((4du)/((1+u^2 )(((1−u^2 )/(1+u^2 )) +((2u)/(1+u^2 ))))) =4 ∫_0 ^((√2)−1)  (du/(1−u^2  +2u))  =−4 ∫_0 ^((√2)−1)  (du/(u^2 −2u−1)) =−4 ∫_0 ^((√2)−1)  (du/((u−1)^2 −2)) =−4 ∫_0 ^((√2)−1)  (du/((u−1−(√2))(u−1+(√2))))  =((−4)/(2(√2)))∫_0 ^((√2)−1) {(1/(u−1−(√2)))−(1/(u−1+(√2)))}du  =−(√2)[ln∣((u−1−(√2))/(u−1+(√2)))∣]_0 ^((√2)−1)  =−(√2){ln∣((−2)/(2(√2)−2))∣−ln∣((1+(√2))/(−1+(√2)))∣}  =−(√2){ln∣(1/(2−(√2)))∣−ln∣(((√2)+1)/((√2)−1))∣ =(√2){ln(2−(√2))+ln((((√2)+1)/((√2)−1)))}

I=0π2dx1+sinxI=0π2dxcos2(x2)+sin2(x2)+sin(x2)cos(x2)=0π2dx(cos(x2)+sin(x2))2=0π2dxcos(x2)+sin(x2)=x2=t0π42dtcost+sint=tan(t2)=u0214du(1+u2)(1u21+u2+2u1+u2)=4021du1u2+2u=4021duu22u1=4021du(u1)22=4021du(u12)(u1+2)=422021{1u121u1+2}du=2[lnu12u1+2]021=2{ln2222ln1+21+2}=2{ln122ln2+121=2{ln(22)+ln(2+121)}

Terms of Service

Privacy Policy

Contact: info@tinkutara.com