Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 191525 by mehdee42 last updated on 25/Apr/23

Q : Show that the numbers (√(3 )) , 2 & (√8) cannot be terms of an arithmetic sequence.

Q:Showthatthenumbers3,2&8cannotbetermsofanarithmeticsequence.

Answered by mr W last updated on 26/Apr/23

(√3)<2<(√8)  assume they are terms of an A.P.,  then we have  2=(√3)+md  (√8)=2+nd  with m,n ∈N, d ∈R.  d=((2−(√3))/m)=(((√8)−2)/n)  ⇒2(m+n)=m(√8)+n(√3)  ⇒4(m+n)^2 =8m^2 +3n^2 +4mn(√6)  ⇒(√6)=((4(m+n)^2 −8m^2 −3n^2 )/(4mn))=((integer)/(integer))  i.e. (√6) is rational, but (√6) is in fact not  rational.   contradiction!  ⇒(√3), 2, (√8) can not be terms of an A.P.!

3<2<8 assumetheyaretermsofanA.P., thenwehave 2=3+md 8=2+nd withm,nN,dR. d=23m=82n 2(m+n)=m8+n3 4(m+n)2=8m2+3n2+4mn6 6=4(m+n)28m23n24mn=integerinteger i.e.6isrational,but6isinfactnot rational. contradiction! 3,2,8cannotbetermsofanA.P.!

Commented bymehdee42 last updated on 27/Apr/23

beravo sir W  the result of  contradiction can also be obtained frome the relation  ((2−(√3))/m)=(((√8)−2)/n)⇒((2−(√3))/( (√8)−2)) =(m/n) ,  because we have rational number on one side anf dumb nimber on thr other side

beravosirW theresultofcontradictioncanalsobeobtainedfrometherelation23m=82n2382=mn, becausewehaverationalnumberononesideanfdumbnimberonthrotherside

Commented bymehdee42 last updated on 27/Apr/23

anyway , your proof  for this contradiction is appriciated

anyway,yourproofforthiscontradictionisappriciated

Commented bymr W last updated on 27/Apr/23

but we can not generally say that  ((irrational number)/(irrational number)) is also irrational.

butwecannotgenerallysaythat irrationalnumberirrationalnumberisalsoirrational.

Commented bymehdee42 last updated on 28/Apr/23

exactly

exactly

Terms of Service

Privacy Policy

Contact: info@tinkutara.com