All Questions Topic List
Algebra Questions
Previous in All Question Next in All Question
Previous in Algebra Next in Algebra
Question Number 191527 by MATHEMATICSAM last updated on 25/Apr/23
x+y=1andx2+y2=2.Findthevalueofx11+y11.
Answered by Rasheed.Sindhi last updated on 25/Apr/23
(x+y)2=1⇒x2+y2+2xy=1⇒2+2xy=1⇒xy=−12(x+y)3=1⇒x3+y3+3xy(x+y)=1x3+y3+3(−12)(1)=1∙x3+y3=1+32=52(x2+y2)(x3+y3)=(2)(52)⇒x5+y5+x2y2(x+y)=5⇒x5+y5+(−12)2(1)=5x5+y5=5−14=194x5+y5=194.......(i)(x3+y3)2=254⇒x6+y6+2x3y3=254∙x6+y6+2(−12)3=254⇒x6+y6=132x6+y6=132........(ii)(i)×(ii):x11+y11+x5y5(x+y)=(194)(132)=2478x11+y11+(−12)5(1)=(194)(132)=2478x11+y11=2478+132=98932x11+y11=98932
Answered by mr W last updated on 25/Apr/23
MethodIIp=e1=1p2=e1p1−2e2⇒2=1−2e2⇒e2=−12pn=e1pn−1−e2pn−1⇒pn−pn−1−12pn−1=0r2−r−12=0r=1±32⇒pn=(1+32)n+(1−32)nexamples:p5=(1+32)5+(1−32)5=194p6=(1+32)6+(1−32)6=132p11=(1+32)11+(1−32)11=98932✓p15=(1+32)15+(1−32)15=13775128p20=(1+32)20+(1−32)20=261575512
Terms of Service
Privacy Policy
Contact: info@tinkutara.com