Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 191589 by MATHEMATICSAM last updated on 28/Apr/23

a^x  = bc, b^y  = ca, c^z  = ab.  Prove that, (x/(1 + x)) + (y/(1 + y)) + (z/(1 + z)) = 2.  (Without using log)  a ≠ b ≠ c

ax=bc,by=ca,cz=ab.Provethat,x1+x+y1+y+z1+z=2.(Withoutusinglog)abc

Commented by mr W last updated on 27/Apr/23

not true if  a=(1/2), b=1, c=2  x=y=z=−1

nottrueifa=12,b=1,c=2x=y=z=1

Answered by Rasheed.Sindhi last updated on 26/Apr/23

a^x  = bc, b^y  = ca, c^z  = ab.  Prove that, (x/(1 + x)) + (y/(1 + y)) + (z/(1 + z)) = 2.  a^x b^y c^z =(bc)(ca)(ab)=a^2 b^2 c^2   x=2,y=2,z=2      (x/(1 + x)) + (y/(1 + y)) + (z/(1 + z))    =(2/(1 + 2)) + (2/(1 + 2)) + (2/(1 + 2))   =(2/3)+(2/3)+(2/3)=(2/3)×3=2

ax=bc,by=ca,cz=ab.Provethat,x1+x+y1+y+z1+z=2.axbycz=(bc)(ca)(ab)=a2b2c2x=2,y=2,z=2x1+x+y1+y+z1+z=21+2+21+2+21+2=23+23+23=23×3=2

Terms of Service

Privacy Policy

Contact: info@tinkutara.com