Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 191611 by vishal1234 last updated on 27/Apr/23

if x^2 −x+1 = 0 and α and β are thd roots  of this equation then evaluate ((α^(100) +β^(100) )/(α^(100) −β^(100) ))

ifx2x+1=0andαandβarethdrootsofthisequationthenevaluateα100+β100α100β100

Answered by mehdee42 last updated on 27/Apr/23

x=((1±(√3)i)/2)⇒α=((1+(√3)i)/2)=e^((π/3)i)  & β=((1−(√3)i)/2)=e^(−(π/3)i)   α^(100) +β^(100) =e^(((100π)/3)i) +e^(−((100π)/3)i) =2cos((100π)/3)=−2cos(π/3)=−1  α^(100) −β^(100) =e^(((100π)/3)i) +e^(−((100π)/3)i) =2sin((100π)/3)=−2isin(π/3)=−(√3)i  ⇒answer=(1/( (√3)i))=−((√3)/3)i

x=1±3i2α=1+3i2=eπ3i&β=13i2=eπ3iα100+β100=e100π3i+e100π3i=2cos100π3=2cosπ3=1α100β100=e100π3i+e100π3i=2sin100π3=2isinπ3=3ianswer=13i=33i

Terms of Service

Privacy Policy

Contact: info@tinkutara.com