All Questions Topic List
Algebra Questions
Previous in All Question Next in All Question
Previous in Algebra Next in Algebra
Question Number 191623 by Shrinava last updated on 27/Apr/23
Answered by mehdee42 last updated on 27/Apr/23
let:f(x)=ax+bf(f(x))+f(x)=−x⇒(a2+a)x+ab+2b=−x⇒a=−1+3i2=e2π3i&b=0⇒f(x)=e2π3ixf(f(f(12+cosx)))=12+cosx⇒Ω=∫0πdx2+cosx=∫0π1+tanx2tan2x2+3dxlet:tanx2=u⇒Ω=2∫0∞duu2+3=[23tan−1(u3)]0∞=π3
Answered by witcher3 last updated on 28/Apr/23
f(f(0))+f(0)=0;f(0)=af(f(x))+f(x)+x=0(fof(x)+f(x)+x)o.f(x)−{fof(x)+f(x)+x}=0of(x)−0=0fofof(x)+fof(x)+f(x)−fof(x)−f(x)−x=0⇒fofof(x)=xΩ=∫0π12+cos(x)=∫0πdx2cos2(x2)+1=2∫0π2dycos2(y)(3+tg2(y))=23.[tan−1(tg(y)3)]0π2=π3
Terms of Service
Privacy Policy
Contact: info@tinkutara.com