Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 191623 by Shrinava last updated on 27/Apr/23

Answered by mehdee42 last updated on 27/Apr/23

let : f(x)=ax+b  f(f(x))+f(x)=−x ⇒(a^2 +a)x+ab+2b=−x⇒a=((−1+(√3)i)/2)=e^(((2π)/3)i)   &  b=0⇒f(x)=e^(((2π)/3)i) x  f(f(f((1/(2+cosx)))))=(1/(2+cosx))  ⇒Ω=∫_0 ^π (dx/(2+cosx))=∫_0 ^π  ((1+tan(x/2))/(tan^2 (x/2) +3))dx  let : tan(x/2)=u⇒Ω=2∫_0 ^∞  (du/(u^2 +3))=[(2/( (√3)))tan^(−1) ((u/( (√3))))]_0 ^∞   =(π/( (√3)))

let:f(x)=ax+bf(f(x))+f(x)=x(a2+a)x+ab+2b=xa=1+3i2=e2π3i&b=0f(x)=e2π3ixf(f(f(12+cosx)))=12+cosxΩ=0πdx2+cosx=0π1+tanx2tan2x2+3dxlet:tanx2=uΩ=20duu2+3=[23tan1(u3)]0=π3

Answered by witcher3 last updated on 28/Apr/23

f(f(0))+f(0)=0;f(0)=a  f(f(x))+f(x)+x=0  (fof(x)+f(x)+x)o.f(x)−{fof(x)+f(x)+x}=0of(x)−0=0  fofof(x)+fof(x)+f(x)−fof(x)−f(x)−x=0  ⇒fofof(x)=x    Ω=∫_0 ^π (1/(2+cos(x)))=∫_0 ^π (dx/(2cos^2 ((x/2))+1))  =2∫_0 ^(π/2) (dy/(cos^2 (y)(3+tg^2 (y))))  =(2/( (√3))).[tan^(−1) (((tg(y))/( (√3))))]_0 ^(π/2) =(π/( (√3)))

f(f(0))+f(0)=0;f(0)=af(f(x))+f(x)+x=0(fof(x)+f(x)+x)o.f(x){fof(x)+f(x)+x}=0of(x)0=0fofof(x)+fof(x)+f(x)fof(x)f(x)x=0fofof(x)=xΩ=0π12+cos(x)=0πdx2cos2(x2)+1=20π2dycos2(y)(3+tg2(y))=23.[tan1(tg(y)3)]0π2=π3

Terms of Service

Privacy Policy

Contact: info@tinkutara.com