Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 191626 by yaba1 last updated on 27/Apr/23

Answered by a.lgnaoui last updated on 28/Apr/23

   Calcul de Resistance dans les 4 circuits  •1a   U=RI   avec  (1/R)=(1/(R1))+(1/(R2))+(1/(R3))       =((R1+R2)/(R1×R2))+(1/(R3))=(((R1×R3+R2×R3+R1×R2))/(R1×R2×R3))       R=((R1×R2×R3)/(R1×R2+R2×R3+R1×R3))    R=((7×5×2)/((7×5)+(5×2)+(7×2)))=((70)/(35+10+14))                                R=((70)/(59))=1,18𝛀  •1b     R=R1+R2 =2+5                              R=7𝛀  •1c      R=R1+R2+R3=2+5+7                              R=14  •2       R=R1+R_(eq)              (1/R_(eq) )=(1/((R2+R3)))+(1/((R6+((R4×R5)/(R4+R5)))))        =(1/(R2+R3))+((R4+R5)/(R6(R4+R5)+(R4×R5)))          =((R6(R4+R5)+(R4×R5)+(R4+R5)(R2+R3))/((R2+R3)[R6(R4+R5)+R4×R5]))         =(((R4+R5)(R2+R3+R6)+(R4×R5))/((R2+R3)[R6(R4+R5)+R4×R5]))          Req=(((R2+R3)[R6(R4+R5)+R4×R5])/((R4+R5)(R2+R3+R6)+(R4×R5)))          R=R1+R_(eq)                       R   =80+(((49+51)[75(37+45)+(37×45)])/((37+45)(49+51+75)+(37×45)))         =80+((100[75×82+37×45])/(82×175+37×45))=128,798                                 R=128,798𝛀

CalculdeResistancedansles4circuits1aU=RIavec1R=1R1+1R2+1R3=R1+R2R1×R2+1R3=(R1×R3+R2×R3+R1×R2)R1×R2×R3R=R1×R2×R3R1×R2+R2×R3+R1×R3R=7×5×2(7×5)+(5×2)+(7×2)=7035+10+14R=7059=1,18Ω1bR=R1+R2=2+5R=7Ω1cR=R1+R2+R3=2+5+7R=142R=R1+Req1Req=1(R2+R3)+1(R6+R4×R5R4+R5)=1R2+R3+R4+R5R6(R4+R5)+(R4×R5)=R6(R4+R5)+(R4×R5)+(R4+R5)(R2+R3)(R2+R3)[R6(R4+R5)+R4×R5]=(R4+R5)(R2+R3+R6)+(R4×R5)(R2+R3)[R6(R4+R5)+R4×R5]Req=(R2+R3)[R6(R4+R5)+R4×R5](R4+R5)(R2+R3+R6)+(R4×R5)R=R1+ReqR=80+(49+51)[75(37+45)+(37×45)](37+45)(49+51+75)+(37×45)=80+100[75×82+37×45]82×175+37×45=128,798R=128,798Ω

Answered by a.lgnaoui last updated on 28/Apr/23

Calcul de Capacite equivalante  •a_(12)       capacites en paralele         I=I1+I2 ⇒U=U    ⇒C=C1+C2+C3=12+20+30                         ]C=62𝛈F    b_(12)      capacites en serie       (1/C)=(1/(C1))+(1/(C2))+(1/(C3)) =((C1+C2)/(C1.C2))+(1/(C3))            =((C3(C1+C2)+C1.C2)/(C1.C2.C3))  ⇒C=((C1.C2.C3)/(C3(C1+C2)+C1.C2))      C=((17×20×30)/(30(17+20)+17×20))=((1020)/(145))                       C=7,034𝛈F

CalculdeCapaciteequivalantea12capacitesenparaleleI=I1+I2U=UC=C1+C2+C3=12+20+30]C=62ηFb12capacitesenserie1C=1C1+1C2+1C3=C1+C2C1.C2+1C3=C3(C1+C2)+C1.C2C1.C2.C3C=C1.C2.C3C3(C1+C2)+C1.C2C=17×20×3030(17+20)+17×20=1020145C=7,034ηF

Answered by manxsol last updated on 28/Apr/23

Terms of Service

Privacy Policy

Contact: info@tinkutara.com