All Questions Topic List
None Questions
Previous in All Question Next in All Question
Previous in None Next in None
Question Number 191626 by yaba1 last updated on 27/Apr/23
Answered by a.lgnaoui last updated on 28/Apr/23
CalculdeResistancedansles4circuits∙1aU=RIavec1R=1R1+1R2+1R3=R1+R2R1×R2+1R3=(R1×R3+R2×R3+R1×R2)R1×R2×R3R=R1×R2×R3R1×R2+R2×R3+R1×R3R=7×5×2(7×5)+(5×2)+(7×2)=7035+10+14R=7059=1,18Ω∙1bR=R1+R2=2+5R=7Ω∙1cR=R1+R2+R3=2+5+7R=14∙2R=R1+Req1Req=1(R2+R3)+1(R6+R4×R5R4+R5)=1R2+R3+R4+R5R6(R4+R5)+(R4×R5)=R6(R4+R5)+(R4×R5)+(R4+R5)(R2+R3)(R2+R3)[R6(R4+R5)+R4×R5]=(R4+R5)(R2+R3+R6)+(R4×R5)(R2+R3)[R6(R4+R5)+R4×R5]Req=(R2+R3)[R6(R4+R5)+R4×R5](R4+R5)(R2+R3+R6)+(R4×R5)R=R1+ReqR=80+(49+51)[75(37+45)+(37×45)](37+45)(49+51+75)+(37×45)=80+100[75×82+37×45]82×175+37×45=128,798R=128,798Ω
CalculdeCapaciteequivalante∙a12capacitesenparaleleI=I1+I2⇒U=U⇒C=C1+C2+C3=12+20+30]C=62ηFb12capacitesenserie1C=1C1+1C2+1C3=C1+C2C1.C2+1C3=C3(C1+C2)+C1.C2C1.C2.C3⇒C=C1.C2.C3C3(C1+C2)+C1.C2C=17×20×3030(17+20)+17×20=1020145C=7,034ηF
Answered by manxsol last updated on 28/Apr/23
Terms of Service
Privacy Policy
Contact: info@tinkutara.com