Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 19167 by Tinkutara last updated on 06/Aug/17

Two particles A and B move with  constant velocities v_1  and v_2  along two  mutually perpendicular straight lines  towards the intersection point O. At  moment t = 0, the particles were  located at distances d_1  and d_2  from O  respectively. Find the time, when they  are nearest and also this shortest  distance.

$$\mathrm{Two}\:\mathrm{particles}\:{A}\:\mathrm{and}\:{B}\:\mathrm{move}\:\mathrm{with} \\ $$$$\mathrm{constant}\:\mathrm{velocities}\:{v}_{\mathrm{1}} \:\mathrm{and}\:{v}_{\mathrm{2}} \:\mathrm{along}\:\mathrm{two} \\ $$$$\mathrm{mutually}\:\mathrm{perpendicular}\:\mathrm{straight}\:\mathrm{lines} \\ $$$$\mathrm{towards}\:\mathrm{the}\:\mathrm{intersection}\:\mathrm{point}\:{O}.\:\mathrm{At} \\ $$$$\mathrm{moment}\:{t}\:=\:\mathrm{0},\:\mathrm{the}\:\mathrm{particles}\:\mathrm{were} \\ $$$$\mathrm{located}\:\mathrm{at}\:\mathrm{distances}\:{d}_{\mathrm{1}} \:\mathrm{and}\:{d}_{\mathrm{2}} \:\mathrm{from}\:{O} \\ $$$$\mathrm{respectively}.\:\mathrm{Find}\:\mathrm{the}\:\mathrm{time},\:\mathrm{when}\:\mathrm{they} \\ $$$$\mathrm{are}\:\mathrm{nearest}\:\mathrm{and}\:\mathrm{also}\:\mathrm{this}\:\mathrm{shortest} \\ $$$$\mathrm{distance}. \\ $$

Commented by Tinkutara last updated on 06/Aug/17

Answered by ajfour last updated on 06/Aug/17

Commented by ajfour last updated on 06/Aug/17

v_(relative) =v_r =(√(v_1 ^2 +v_2 ^2 ))   AB=r=(√(d_1 ^2 +d_2 ^2 ))   α=(α+θ)−θ  rsin α=rsin (α+θ)cos θ−rcos (α+θ)sin θ            =d_1 ((v_2 /v_r ))−d_2 ((v_1 /v_r ))    .....(i)  rcos α=rcos (α+θ)cos θ+sin (α+θ)sin θ            =d_2 ((v_2 /v_r ))+d_1 ((v_1 /v_r ))   .....(ii)       From figure,  shortest distance s is given by      s=∣rsin α∣        =((∣d_1 v_2 −d_2 v_1 ∣)/(√(v_2 ^2 +v_1 ^2 )))            [see (i)]  let time when at shortest distance  be t_s ,    v_r t_s =rcos α      t_s =((rcos α)/v_r ) =((d_1 v_1 +d_2 v_2 )/v_r ^2 )     [see (ii)]             t_s  =((v_1 d_1 +v_2 d_2 )/(v_1 ^2 +v_2 ^2 )) .

$$\mathrm{v}_{\mathrm{relative}} =\mathrm{v}_{\mathrm{r}} =\sqrt{\mathrm{v}_{\mathrm{1}} ^{\mathrm{2}} +\mathrm{v}_{\mathrm{2}} ^{\mathrm{2}} }\: \\ $$$$\mathrm{AB}=\mathrm{r}=\sqrt{\mathrm{d}_{\mathrm{1}} ^{\mathrm{2}} +\mathrm{d}_{\mathrm{2}} ^{\mathrm{2}} }\: \\ $$$$\alpha=\left(\alpha+\theta\right)−\theta \\ $$$$\mathrm{rsin}\:\alpha=\mathrm{rsin}\:\left(\alpha+\theta\right)\mathrm{cos}\:\theta−\mathrm{rcos}\:\left(\alpha+\theta\right)\mathrm{sin}\:\theta \\ $$$$\:\:\:\:\:\:\:\:\:\:=\mathrm{d}_{\mathrm{1}} \left(\frac{\mathrm{v}_{\mathrm{2}} }{\mathrm{v}_{\mathrm{r}} }\right)−\mathrm{d}_{\mathrm{2}} \left(\frac{\mathrm{v}_{\mathrm{1}} }{\mathrm{v}_{\mathrm{r}} }\right)\:\:\:\:.....\left(\mathrm{i}\right) \\ $$$$\mathrm{rcos}\:\alpha=\mathrm{rcos}\:\left(\alpha+\theta\right)\mathrm{cos}\:\theta+\mathrm{sin}\:\left(\alpha+\theta\right)\mathrm{sin}\:\theta \\ $$$$\:\:\:\:\:\:\:\:\:\:=\mathrm{d}_{\mathrm{2}} \left(\frac{\mathrm{v}_{\mathrm{2}} }{\mathrm{v}_{\mathrm{r}} }\right)+\mathrm{d}_{\mathrm{1}} \left(\frac{\mathrm{v}_{\mathrm{1}} }{\mathrm{v}_{\mathrm{r}} }\right)\:\:\:.....\left(\mathrm{ii}\right) \\ $$$$\:\:\:\:\:\mathrm{From}\:\mathrm{figure}, \\ $$$$\mathrm{shortest}\:\mathrm{distance}\:\mathrm{s}\:\mathrm{is}\:\mathrm{given}\:\mathrm{by} \\ $$$$\:\:\:\:\mathrm{s}=\mid\mathrm{rsin}\:\alpha\mid \\ $$$$\:\:\:\:\:\:=\frac{\mid\mathrm{d}_{\mathrm{1}} \mathrm{v}_{\mathrm{2}} −\mathrm{d}_{\mathrm{2}} \mathrm{v}_{\mathrm{1}} \mid}{\sqrt{\mathrm{v}_{\mathrm{2}} ^{\mathrm{2}} +\mathrm{v}_{\mathrm{1}} ^{\mathrm{2}} }}\:\:\:\:\:\:\:\:\:\:\:\:\left[\mathrm{see}\:\left(\mathrm{i}\right)\right] \\ $$$$\mathrm{let}\:\mathrm{time}\:\mathrm{when}\:\mathrm{at}\:\mathrm{shortest}\:\mathrm{distance} \\ $$$$\mathrm{be}\:\mathrm{t}_{\mathrm{s}} , \\ $$$$\:\:\mathrm{v}_{\mathrm{r}} \mathrm{t}_{\mathrm{s}} =\mathrm{rcos}\:\alpha \\ $$$$\:\:\:\:\mathrm{t}_{\mathrm{s}} =\frac{\mathrm{rcos}\:\alpha}{\mathrm{v}_{\mathrm{r}} }\:=\frac{\mathrm{d}_{\mathrm{1}} \mathrm{v}_{\mathrm{1}} +\mathrm{d}_{\mathrm{2}} \mathrm{v}_{\mathrm{2}} }{\mathrm{v}_{\mathrm{r}} ^{\mathrm{2}} }\:\:\:\:\:\left[\mathrm{see}\:\left(\mathrm{ii}\right)\right] \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\mathrm{t}_{\mathrm{s}} \:=\frac{\mathrm{v}_{\mathrm{1}} \mathrm{d}_{\mathrm{1}} +\mathrm{v}_{\mathrm{2}} \mathrm{d}_{\mathrm{2}} }{\mathrm{v}_{\mathrm{1}} ^{\mathrm{2}} +\mathrm{v}_{\mathrm{2}} ^{\mathrm{2}} }\:. \\ $$

Commented by Tinkutara last updated on 06/Aug/17

Thank you very much Sir!

$$\mathrm{Thank}\:\mathrm{you}\:\mathrm{very}\:\mathrm{much}\:\mathrm{Sir}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com