Question and Answers Forum

All Questions      Topic List

Vector Calculus Questions

Previous in All Question      Next in All Question      

Previous in Vector Calculus      Next in Vector Calculus      

Question Number 192023 by Shlock last updated on 05/May/23

Answered by a.lgnaoui last updated on 06/May/23

graphe(1)  y _1    represente raphe is quart circle (radius 2) centre(0,0)  x^2 +y^2 =4           0<x<2   y_1 =(√(4−x^2 ))  (1)  graphe(2)  graphe is parabole:  somet (0,2) coupe  axe (o,x)en  x=4  passant par point(5,−3)  equation y_2 = −ax^2 +bx+c  A(0,2)                ⇒   c=2  B(4,0) et C(5;−3)  ⇒ { ((−16a+4b+2=0)),((−25a+5b+2=−3)) :}  9a−b=3   ⇒ b=9a−3     −16a+4(9a−3)+2=0     ⇒(a=(1/2)  b=(3/2))      y_2 =−(1/2)x^2 +(3/2)x+2      (2)   Surface designee sur (fig 1)   S=∫_0 ^4 (−(1/2)x^2 +(3/2)x+2)dx−∫_0 ^2 (√(4−x^2 )) dx  [−(x^3 /6)+((3x^2 )/4)+2x+c]_(x=0) ^4 −2∣∫_0 ^2 (√(1−((x/2))^2 )) dx∣  S=9,34−4∫_0 ^(π/2) ∣ cos^2  tdt ∣       avec             sin t=(x/2)     dx=2cos tdt      (a suivre).. .....

graphe(1)y1representerapheisquartcircle(radius2)centre(0,0)x2+y2=40<x<2y1=4x2(1)graphe(2)grapheisparabole:somet(0,2)coupeaxe(o,x)enx=4passantparpoint(5,3)equationy2=ax2+bx+cA(0,2)c=2B(4,0)etC(5;3){16a+4b+2=025a+5b+2=39ab=3b=9a316a+4(9a3)+2=0(a=12b=32)y2=12x2+32x+2(2)Surfacedesigneesur(fig1)S=04(12x2+32x+2)dx024x2dx[x36+3x24+2x+c]x=042021(x2)2dxS=9,3440π2cos2tdtavecsint=x2dx=2costdt(asuivre).......

Answered by a.lgnaoui last updated on 06/May/23

Surface pour graphe  (fig 2)  y_1 :      A(2,2)    B(3,5)    C(7,7)    forme d ′une parabole de somet C    equation:  −a_1 x^2 +b_1 x+c_1    x=2→  y=−4a_1 +2b_1 +c_1 =2          (1)    x=3→  y=−9a_1 +3b_1 +c_1 =5          (2)    x=7 → y=−49a_1 +7b_1 +c_1 =7        (3)  (1)⇒   c_1 =2+4a_1 −2b_1   (2)−(3)→40a_1 −4b_1 =−2                 ou     20a_1 −2b_1 =−1         (4)  (2)→   −9a_1 +3b_1 +(2+4a_1 −2b_1 )=5                   −5a_1 +b_1 =3    → { ((20a_1 −2b_1 =−1      )),((−5a_1 +b_1   =+3    )) :}          10a_1 =5       a_1 =(1/2)  →b_1 =3+(5/2)=((11)/2)         c_1 =2+2−11=7    determinant (((a_1 =−(1/2)   b_1 =((11)/2) )),((        c_1 =−7)))        donc        y_1 →   −(1/2)x^2 +((11)/2)x−7     Graphe(I)    Calcul  Equation (y_2 )      y_2 →A(0,0)   ;B(4,2)    C(5,5)      y_2 : forme de parabole (centre (0,0)      passant par A, B et C (croissante a_2 >0)     y_2 =a_2 x^2 +b_2 x+c_2      x=0     y=0   ⇒   c_2 =0      x=4    16a_2 +4b_2 =2     ou                      8a_2 +2b_2 =1      x=5     25a_2 +5b_2 =5    ou                       5a_2 +b_2    =1       { ((4a_2 +2b_(2 ) =  1           (1))),((5a_2 +  b_2   =1             (2))) :}    ⇒a_2 =((1 )/6)       b=(1/6)    determinant (((a_2 =(1/6))),((b_2 =(1/6))))      y_2 =(x^2 /6)+(x/6)  Surface sombre limite par A B C D  S=∫_2 ^5 (y_1 −y_2 )dx−[(2×2)−∫_2 ^4 y_2 dx]  −[(2×2)−∫_1 ^5 y_1 dx]  ∫y_1 dx=((−x^3 )/6)+((11x^2 )/4)−7x  ∫y_2 dx=(x^3 /(18))+(x^2 /(12))  S=[((−x^3 )/6)+((11x^2 )/4)−7x]_2 ^5 +[((−x^3 )/6)+((11x^2 )/4)−7x]_3 ^5   −[(x^3 /(18))+(x^2 /(12))]_2 ^5 +[(x^3 /(18))+(x^2 /(12))]_2 ^4 −y_1 (5)×(5−3)−4   apres des xalculs on obtient:    Surface     S=18−12                  Soit     S=6

Surfacepourgraphe(fig2)y1:A(2,2)B(3,5)C(7,7)formeduneparaboledesometCequation:a1x2+b1x+c1x=2y=4a1+2b1+c1=2(1)x=3y=9a1+3b1+c1=5(2)x=7y=49a1+7b1+c1=7(3)(1)c1=2+4a12b1(2)(3)40a14b1=2ou20a12b1=1(4)(2)9a1+3b1+(2+4a12b1)=55a1+b1=3{20a12b1=15a1+b1=+310a1=5a1=12b1=3+52=112c1=2+211=7a1=12b1=112c1=7doncy112x2+112x7Graphe(I)CalculEquation(y2)y2A(0,0);B(4,2)C(5,5)y2:formedeparabole(centre(0,0)passantparA,BetC(croissantea2>0)y2=a2x2+b2x+c2x=0y=0c2=0x=416a2+4b2=2ou8a2+2b2=1x=525a2+5b2=5ou5a2+b2=1{4a2+2b2=1(1)5a2+b2=1(2)a2=16b=16a2=16b2=16y2=x26+x6SurfacesombrelimiteparABCDS=25(y1y2)dx[(2×2)24y2dx][(2×2)15y1dx]y1dx=x36+11x247xy2dx=x318+x212S=[x36+11x247x]25+[x36+11x247x]35[x318+x212]25+[x318+x212]24y1(5)×(53)4apresdesxalculsonobtient:SurfaceS=1812SoitS=6

Commented by a.lgnaoui last updated on 06/May/23

Terms of Service

Privacy Policy

Contact: info@tinkutara.com