Question and Answers Forum

All Questions      Topic List

Vector Calculus Questions

Previous in All Question      Next in All Question      

Previous in Vector Calculus      Next in Vector Calculus      

Question Number 192024 by Shlock last updated on 05/May/23

Answered by a.lgnaoui last updated on 05/May/23

The shaded Area betwen  [y=0,y=(√(25−x^2 )) −3  ;y=(√(4−x^2  ))]  ∫_0 ^4 ((√(25−x^2 )) −(√(4−x^2  ))  −3)dx  5∫_0 ^4 (√(1−((x/5))^2  )) dx−2∣∫_0 ^2 (√(1−((x/2))^2 )) ∣−3∫_0 ^4 dx  =(I_1 +I_3 )−I_2      Calcul de I_1   Posons  (x/5)=cos t  ⇒(√(1−cos ^2 t)) =sint  x=5cost  [ dx=−5sin  tdt     x=0  t=(π/2)     x=4    t=arccos ((4/5))  I_1   =−5∫sin tcos tdt=−(5/2)∫_(𝛑/2) ^(srccos((4/5))) sin 2tdt  =((−5)/4)[cos 2t]_(𝛑/2) ^(arccos ((4/5))) =((−5)/4)[ (0,4)−1]=(3/4)  calcul de I_2     I_2    =2(√(1−((x/2))^2 )) dx   ( (x/2))=cos t     x=2cos t   dx=−2sin tdt      x=0   t=(𝛑/2)     x=2   t=0  −2∫_(𝛑/2) ^0 sin2tdt=−[cos 2t]_(𝛑/2) ^0 =−(1+1)=−2  calcul de I_3       I_3 =3[x]_0 ^4 =12  I=∣(3/4)−12+2∣=((3−48+8)/4)∣=((37)/4)

TheshadedAreabetwen[y=0,y=25x23;y=4x2]04(25x24x23)dx5041(x5)2dx2021(x2)2304dx=(I1+I3)I2CalculdeI1Posonsx5=cost1cos2t=sintx=5cost[dx=5sintdtx=0t=π2x=4t=arccos(45)I1=5sintcostdt=52π2srccos(45)sin2tdt=54[cos2t]π2arccos(45)=54[(0,4)1]=34calculdeI2I2=21(x2)2dx(x2)=costx=2costdx=2sintdtx=0t=π2x=2t=02π20sin2tdt=[cos2t]π20=(1+1)=2calculdeI3I3=3[x]04=12I=∣3412+2∣=348+84∣=374

Commented by a.lgnaoui last updated on 06/May/23

Ithink there is error in calcul (integrals)?

Ithinkthereiserrorincalcul(integrals)?

Terms of Service

Privacy Policy

Contact: info@tinkutara.com