Question and Answers Forum

All Questions      Topic List

Probability and Statistics Questions

Previous in All Question      Next in All Question      

Previous in Probability and Statistics      Next in Probability and Statistics      

Question Number 192105 by Spillover last updated on 08/May/23

Answered by mehdee42 last updated on 09/May/23

 a)   lema : if  0<x<1 ⇒ Σ_(i=0) ^∞ ix^i =(x/((1−x)^2 ))   &   Σ_(i=0) ^∞ i^2 x^i =((x(1+x))/((1−x)^3 ))   thus   E(x)=Σ xf(x)=(2/3)Σ_(i=0) ^∞  i((1/3))^i =(1/2) ✓    b) Var(x)=E(x^2 )−E^2 (x)  E(x^2 )=Σx^2 f(x)=(2/3)Σ_(i=0) ^∞ i^2  ((1/3))^i =(2/3)×(4/9)×((27)/8) =1  ⇒Var(x)=1−(1/4)=(3/4) ✓  c) P(0)+P(1)+P(2)+P(3)= (2/3)(0+(1/3)+(1/9)+(1/(27)))=((26)/(81)) ✓

a)lema:if0<x<1i=0ixi=x(1x)2&i=0i2xi=x(1+x)(1x)3thusE(x)=Σxf(x)=23i=0i(13)i=12b)Var(x)=E(x2)E2(x)E(x2)=Σx2f(x)=23i=0i2(13)i=23×49×278=1Var(x)=114=34c)P(0)+P(1)+P(2)+P(3)=23(0+13+19+127)=2681

Commented by Spillover last updated on 12/May/23

thanks

thanks

Answered by Spillover last updated on 12/May/23

From factorial generating function   ∅_x (t)=E(t^x )  E(t^x )=Σ_x ^∞ (2/3)t^x ((1/3))^x      (2/3)Σ_(x=0) ^∞ t^x ((1/3))^x = (2/3)Σ_(x=0) ^∞ ((t/3))^x   (2/3)Σ_(x=0) ^∞ ((t/3))^x =(2/3)(1+(t/3)+(t^2 /3^(2 ) )+(t^3 /3^3 )+...)  let y=(t/3)  E(t^x )=(2/3)(1+y+y^2 +y^3 +...)  from s_∞ =(G_1 /(1−r))      s_∞ =(1/(1−r))    but r=y=(t/3)  s_∞ =(1/(1−r)) =(1/(1−(t/3)))=(3/(3−t))  E(t^x )=(2/3)(1+y+y^2 +y^3 +...)        E(t^x )=(2/3)((3/(3−t)))=(2/(3−t))  ∅_x (t)=(2/(3−t))  ∅_x ^′ (t)=(2/((3−t)^2 ))     ∅_x ^(′′) (t)=(2/((3−t)^3 ))     ∅_x ^(′′′)  (t)=(2/((3−t)^3 ))     E(x)=∅_x ^′ (t)=(2/((3−t)^2 ))      t=1   E(x)=((2/((3−1)^2 ))) =(1/2)  var(x)=E(x)−[E(x)]^2   var(x)= ∅_x ^(′′) (t)+E(x)−[E(x)]^2   var(x)= (1/2)+(1/2)−((1/2))^2 =(3/4)

Fromfactorialgeneratingfunctionx(t)=E(tx)E(tx)=x23tx(13)x23x=0tx(13)x=23x=0(t3)x23x=0(t3)x=23(1+t3+t232+t333+...)lety=t3E(tx)=23(1+y+y2+y3+...)froms=G11rs=11rbutr=y=t3s=11r=11t3=33tE(tx)=23(1+y+y2+y3+...)E(tx)=23(33t)=23tx(t)=23tx(t)=2(3t)2x(t)=2(3t)3x(t)=2(3t)3E(x)=x(t)=2(3t)2t=1E(x)=(2(31)2)=12var(x)=E(x)[E(x)]2var(x)=x(t)+E(x)[E(x)]2var(x)=12+12(12)2=34

Answered by Spillover last updated on 12/May/23

From probability generating function of x  G_x (t)=(2/(3−t))   G_x ^′ (t)=(2/((3−t)^(−2) ))       G_x ^(′′) (t)=(2/((3−t)^(−3) ))      G_x ′′′(t)=(2/((3−t)^(−4) ))   G_x (t)=G_x (0)t^0 +G_x (0)t+G_x (0)(t^2 /(2!))++G_x (0)(t^3 /(3!))+...  G_x (t)=(2/3)t^0 +(2/9)t+(4/(27))((t^2 /(2!)))+(2/(81))((t^3 /(3!)))+...  G_x (t)=(2/3)t^0 +(2/9)t+(2/(27))t^2 +(2/(81))t^3 +...  P(X=0)=(2/3)   P(X=1)=(2/9)   P(X=2)=(2/(27))  P(X=3)=(2/(81))  P(x)= P(X=0)+P(X=1)+   P(X=2)+  P(X=3)  P(x)=(2/3)+(2/9)+(2/(27))=((36)/(81))

FromprobabilitygeneratingfunctionofxGx(t)=23tGx(t)=2(3t)2Gx(t)=2(3t)3Gx(t)=2(3t)4Gx(t)=Gx(0)t0+Gx(0)t+Gx(0)t22!++Gx(0)t33!+...Gx(t)=23t0+29t+427(t22!)+281(t33!)+...Gx(t)=23t0+29t+227t2+281t3+...P(X=0)=23P(X=1)=29P(X=2)=227P(X=3)=281P(x)=P(X=0)+P(X=1)+P(X=2)+P(X=3)P(x)=23+29+227=3681

Terms of Service

Privacy Policy

Contact: info@tinkutara.com