All Questions Topic List
None Questions
Previous in All Question Next in All Question
Previous in None Next in None
Question Number 192204 by naka3546 last updated on 11/May/23
Answered by a.lgnaoui last updated on 11/May/23
soit:C(O,R)CentreO(a,b)equatincercle(origineO)(x−a)2+(y−b)2=R2(E)Points:CetBverrifient{(4−a)2+(−3−b)2=R2(1)(3−a)2+(2−b)2=R2(2)(2)−(1)⇒a−5b=6(3)distanceBC=(4−3)2+(−5)2=26lepointC(x,y)apourcoordonnes△ABCAC=(4−x)2+(3+y)2°yA>yCxA<xcAC2=26+(8,06)2−2(8,06×26)cos(118)=116,949583656AC=10,81432{(E)x2+y2−2(ax+by)=R2a=6+5bdapresproprieteducentrecercleO2∡BCA=∡BOA=90⇒△OABtrianglerectangleOA2+OB2=R2OA=OB=R⇒R=AB22=5,699dapres(E)(x−a)2+(y−b)2=32,478apliqueaupont(BC){(4−a)2+(−3+6−a5)2=32,478(1)(3−a)2+(2+6−a5)2=32,478(2)choisissons(1)a2−8a−6(6−a5)+25+(6−a5)2=32,47825a2−200a−30(6−a)+252+(6−a)2=32,478×2526a2−182a+481=32,478×252a2−7a−781,25=0△=49+3125=3174=236a=7±2362⇒{a=7+2362(1)a=7−2362(2)b=a−65b=236+110b=6−23610donclescoordonnespossiblesducentrOsont:(a,b)={(7+2362,236+110),(7−2362,6−23610)}equation2⇒13+a2+b2−(6a+4b)=R2(y−b)2=R2−(x−a)2y=R2−(x−a)2+bR2−(x−a)2>0R>∣x−a∣{xc=4>0yc<0⇒4−7+2362=8−7−2362<0⇒y<0donclavaleurdeaaccepteeesta=7−2362soitb=6−23610donc:O(7−2362,6−23610)
Commented by naka3546 last updated on 12/May/23
Thankyou
Terms of Service
Privacy Policy
Contact: info@tinkutara.com