Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 192204 by naka3546 last updated on 11/May/23

Answered by a.lgnaoui last updated on 11/May/23

soit:  C(O,R)   CentreO(a,b)  equatin cercle (origine O)      (x−a)^2 +(y−b)^2 =R^2         (E)  Points:  C et  B  verrifient   { (((4−a)^2 +(−3−b)^2 =R^2      (1))),(((3−a)^2   +   (2−b)^2 =R^2     (2))) :}       (2)−(1)⇒   a−5b=6              (3)  distance BC=(√((4−3)^2 +(−5)^2  )) =(√(26))  le point C(x,y)  a pour coordonnes  △ABC   AC=(√((4−x)^2 +(3+y)^2 ))  °   y_A >y_C         x_A <x_c   AC^2 =26+(8,06)^2 −2(8,06×(√(26)) )cos (118)  =116,949583656      AC=10,81432                  { (),() :}  (E)  x^2 +y^2 −2(ax+by)=R^2   a=6+5b  d apres propriete du centre cercle O  2∡BCA=∡BOA=90  ⇒△OAB   triangle rectangle   OA^2 +OB^2 =R^2   OA=OB=R         ⇒  R=((AB(√2))/2)=5,699   d apres( E) (  x−a)^2 +(y−b)^2 =32,478  aplique au pont (BC)                  { (((4−a)^2 +(−3+((6−a)/5))^2 =32,478  (1))),(((3−a)^2 +(2+((6−a)/5))^2     =32,478  (2))) :}  choisissons  (1)  a^2 −8a−6(((6−a)/5))+25+(((6−a)/5))^2 =32,478  25a^2 −200a−30(6−a)+25^2 +(6−a)^2 =32,478×25  26a^2 −182a+481=32,478×25^2      a^2 −7a−781,25=0  △=49+3125=3174=23(√6)    a=((7±23(√6))/2)⇒ { ((a=((7+23(√6))/2)       (1))),((a=((7−23(√6))/2)       (2))) :}          b=((a−6)/5)                 b= ((23(√6) +1)/(10))                                         b=((6−23(√6))/(10))  donc les coordonnes possibles du centr O sont:    (a,b)={(((7+23(√6))/2) ,((23(√6) +1)/(10)))    ,  (((7−23(√6))/2),((6−23(√6))/(10)))}  equation  2⇒  13+a^2 +b^2 −(6a+4b)=R^2   (y−b)^2 =R^2 −(x−a)^2   y=(√(R^2 −(x−a)^2 )) +b     R^2 −(x−a)^2 >0     R>∣x−a∣   { ((xc=4>0)),((y_c <0)) :} ⇒ 4−((7+23(√6))/2)=((8−7−23(√6))/2)<0       ⇒y<0  donc    la valeur de  a acceptee est   a=((7−23(√6))/2)     soit  b=((6−23(√6))/(10))       donc:    O(((7−23(√6))/2) ,((6−23(√6))/(10)))

soit:C(O,R)CentreO(a,b)equatincercle(origineO)(xa)2+(yb)2=R2(E)Points:CetBverrifient{(4a)2+(3b)2=R2(1)(3a)2+(2b)2=R2(2)(2)(1)a5b=6(3)distanceBC=(43)2+(5)2=26lepointC(x,y)apourcoordonnesABCAC=(4x)2+(3+y)2°yA>yCxA<xcAC2=26+(8,06)22(8,06×26)cos(118)=116,949583656AC=10,81432{(E)x2+y22(ax+by)=R2a=6+5bdapresproprieteducentrecercleO2BCA=BOA=90OABtrianglerectangleOA2+OB2=R2OA=OB=RR=AB22=5,699dapres(E)(xa)2+(yb)2=32,478apliqueaupont(BC){(4a)2+(3+6a5)2=32,478(1)(3a)2+(2+6a5)2=32,478(2)choisissons(1)a28a6(6a5)+25+(6a5)2=32,47825a2200a30(6a)+252+(6a)2=32,478×2526a2182a+481=32,478×252a27a781,25=0=49+3125=3174=236a=7±2362{a=7+2362(1)a=72362(2)b=a65b=236+110b=623610donclescoordonnespossiblesducentrOsont:(a,b)={(7+2362,236+110),(72362,623610)}equation213+a2+b2(6a+4b)=R2(yb)2=R2(xa)2y=R2(xa)2+bR2(xa)2>0R>∣xa{xc=4>0yc<047+2362=872362<0y<0donclavaleurdeaaccepteeesta=72362soitb=623610donc:O(72362,623610)

Commented by naka3546 last updated on 12/May/23

Thank  you

Thankyou

Terms of Service

Privacy Policy

Contact: info@tinkutara.com