Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 192274 by York12 last updated on 13/May/23

prove that lim_(n→∞) (Σ_(k=1) ^n (n^2 /( (√(n^6 +k)))))=1

provethatlimn(nk=1n2n6+k)=1

Answered by aleks041103 last updated on 14/May/23

Σ_(k=1) ^n (n^2 /( (√(n^6 +n))))<Σ_(k=1) ^n (n^2 /( (√(n^6 +k))))<Σ_(k=1) ^n (n^2 /( (√(n^6 +0))))  (n^3 /( n^3 (√(1+n^(−5) ))))<Σ_(k=1) ^n (n^2 /( (√(n^6 +k))))<(n^3 /n^3 )  ⇒(1/( (√(1+(1/n^5 )))))<Σ_(k=1) ^n (n^2 /( (√(n^6 +k))))<1  ⇒lim_(n→∞) (1/( (√(1+(1/n^5 )))))≤lim_(n→∞) (Σ_(k=1) ^n (n^2 /( (√(n^6 +k)))))≤1  ⇒1≤lim_(n→∞) (Σ_(k=1) ^n (n^2 /( (√(n^6 +k)))))≤1  ⇒lim_(n→∞) (Σ_(k=1) ^n (n^2 /( (√(n^6 +k)))))=1

nk=1n2n6+n<nk=1n2n6+k<nk=1n2n6+0n3n31+n5<nk=1n2n6+k<n3n311+1n5<nk=1n2n6+k<1limn11+1n5limn(nk=1n2n6+k)11limn(nk=1n2n6+k)1limn(nk=1n2n6+k)=1

Commented by York12 last updated on 14/May/23

actully I am a high school student in grade   10 and Iwas wondering where can I learn that  I hope if you can help me out with that

actullyIamahighschoolstudentingrade10andIwaswonderingwherecanIlearnthatIhopeifyoucanhelpmeoutwiththat

Commented by York12 last updated on 14/May/23

so intresting technique

sointrestingtechnique

Commented by York12 last updated on 14/May/23

my telegram :yorkgubler

mytelegram:yorkgubler

Terms of Service

Privacy Policy

Contact: info@tinkutara.com