Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 192276 by York12 last updated on 13/May/23

lim_(n→∞) (Σ_(k=0) ^n [((k(n−k)!+(k+1))/((k+1)!(n−k)!))])

limn(nk=0[k(nk)!+(k+1)(k+1)!(nk)!])

Answered by witcher3 last updated on 14/May/23

Σ_(k=0) ^n (1/(k!(n−k)!))=(1/(n!))Σ_(k=0) ^n ((n!)/(k!(n−k)!))  =(1/(n!)).Σ_(k=0) ^n C_n ^k =(2^n /(n!))  Σ_(k=0) ^n (((k(n−k)!+(k+1))/((k+1)!(n−k)!)))=Σ(1/(k!))+(1/(k!(n−k)!))  =Σ_(k=0) ^n (1/(k!))+(2^n /(n!))  lim_(n→∞) =e

nk=01k!(nk)!=1n!nk=0n!k!(nk)!=1n!.nk=0Cnk=2nn!nk=0(k(nk)!+(k+1)(k+1)!(nk)!)=Σ1k!+1k!(nk)!=nk=01k!+2nn!limn=e

Commented by York12 last updated on 20/Aug/23

  lim_(n→∞) (Σ_(k=1) ^n [((k(n−k)!+(k+1))/((k+1)!(n−k)!))]) = lim_(n→∞) (Σ_(k=1) ^n [(k/((k+1)!))+(1/(k!(n−k)!))])  =lim_(n→∞) (Σ_(k=1) ^n [(1/((k!)))−(1/((k+1)!))])+lim_(n→∞) ((2^n /(n!))) = lim_(n→0) (1−(1/((n+1)!))+0)=1  → (That′s it )

limn(nk=1[k(nk)!+(k+1)(k+1)!(nk)!])=limn(nk=1[k(k+1)!+1k!(nk)!])=limn(nk=1[1(k!)1(k+1)!])+limn(2nn!)=limn0(11(n+1)!+0)=1(Thatsit)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com