All Questions Topic List
None Questions
Previous in All Question Next in All Question
Previous in None Next in None
Question Number 192277 by York12 last updated on 13/May/23
Leta1,a2,a3,...,anberealnumberssuchthat:a1+a2−1+a3−2+...+an−(n−1)=12(a1+a2+a3+...+an)−n(n−3)4Thenfindthevalueof[∑100i=1(ai)].
Answered by witcher3 last updated on 14/May/23
a⩽12(a)+12,∀a⩾0⇒∑nk=1ak−(k−1)⩽∑nk=112(ak−k+2)=12(a1+....+an)−12(n(n+1)2−4n2)⇒⩽12(a1+....+an)−n(n−3)4witheEquality⇔itak−(k−1)=1⇒ak=k,∀k∈{1.....n}⇒∑100k=1ak=50(101)=5050
Commented by York12 last updated on 14/May/23
letbi=ai−(i−1)→ai=(bi)2+i−1∴∑nj=1[bi]=12(a1+a2+a3+...+an⏟∑ni=1[ai])−n(n−3)4=12(∑ni=1[(bi)2]+∑ni=1[i]−∑ni=1(1))−n(n−3)4=12∑ni=1[(bi)2]+n2∴2∑ni=1(bi)=∑ni=1[(bi)2]+n→∑ni=1[(bi)2−2bi+1]=0∴[bi−1]2=0→bi=1∴ai=i→∑100i=1(ai)=∑100i=1(i)=100×1012=5050(That′sit){ByYork.W}
Terms of Service
Privacy Policy
Contact: info@tinkutara.com