Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 192277 by York12 last updated on 13/May/23

  Let a_1 , a_2 , a_3 ,..., a_n  be real numbers such that:  (√a_1 ) + (√(a_2 −1  )) +(√(a_3 −2 )) +...+(√(a_n −(n−1) ))=(1/2)(a_1 +a_2 +a_3 +...+a_n )−((n(n−3))/4)  Then find the value of [ Σ_(i=1) ^(100) (a_i )].

Leta1,a2,a3,...,anberealnumberssuchthat:a1+a21+a32+...+an(n1)=12(a1+a2+a3+...+an)n(n3)4Thenfindthevalueof[100i=1(ai)].

Answered by witcher3 last updated on 14/May/23

(√a)≤(1/2)(a)+(1/2),∀a≥0  ⇒Σ_(k=1) ^n (√(a_k −(k−1)))≤Σ_(k=1) ^n (1/2)(a_k −k+2)=(1/2)(a_1 +....+a_n )−(1/2)(((n(n+1))/2)−((4n)/2))  ⇒≤(1/2)(a_1 +....+a_n )−((n(n−3))/4)  withe Equality ⇔  it (√(a_k −(k−1)))=1⇒a_k =k,∀k∈{1.....n}  ⇒Σ_(k=1) ^(100) a_k =50(101)=5050

a12(a)+12,a0nk=1ak(k1)nk=112(akk+2)=12(a1+....+an)12(n(n+1)24n2)⇒⩽12(a1+....+an)n(n3)4witheEqualityitak(k1)=1ak=k,k{1.....n}100k=1ak=50(101)=5050

Commented by York12 last updated on 14/May/23

  let b_i =(√(a_(i  ) −(i−1) )) → a_i =(b_i )^2 +i−1  ∴Σ_(j=1 ) ^n [b_(i ) ]= (1/2)(a_1 +a_2 +a_3 +...+a_n _(Σ_(i=1) ^n [a_(i ) ])  )−((n(n−3))/4)  =(1/2)(Σ_(i=1) ^n [(b_i )^2 ]+Σ_(i=1) ^n [i]−Σ_(i=1) ^n (1))−((n(n−3))/4)  =(1/2) Σ_(i=1) ^n [(b_i )^2 ]+(n/2)  ∴ 2Σ_(i=1) ^n (b_i )=Σ_(i=1) ^n [(b_i )^2 ]+n → Σ_(i=1) ^n [(b_(i  ) )^2 −2b_i +1]=0  ∴ [b_i −1]^2 =0 →  b_i =1  ∴ a_i =i → Σ_(i=1) ^(100) (a_i )=Σ_(i=1) ^(100) (i)=((100×101)/2)=5050  (That′s it)                                           {By York.W}

letbi=ai(i1)ai=(bi)2+i1nj=1[bi]=12(a1+a2+a3+...+anni=1[ai])n(n3)4=12(ni=1[(bi)2]+ni=1[i]ni=1(1))n(n3)4=12ni=1[(bi)2]+n22ni=1(bi)=ni=1[(bi)2]+nni=1[(bi)22bi+1]=0[bi1]2=0bi=1ai=i100i=1(ai)=100i=1(i)=100×1012=5050(Thatsit){ByYork.W}

Terms of Service

Privacy Policy

Contact: info@tinkutara.com