Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 192280 by Mingma last updated on 14/May/23

Answered by witcher3 last updated on 14/May/23

Ω=∫_0 ^∞ (dx/((x^4 −x^2 +1)^3 ))  =∫_0 ^∞ (((x^2 +1)^3 )/((x^2 +1)^3 (x^4 −x^2 +1)^3 ))dx  =∫_0 ^∞ ((x^6 +3x^4 +3x^2 +1)/((x^6 +1)^3 ))dx  x^6 =u  =∫_0 ^∞ ((u+3u^(2/3) +3u^(1/3) +1)/((u+1)^3 )).(u^(−(5/6)) /6)du  =(1/6)∫_0 ^∞ (u^(1/6) /((1+u)^3 ))+((3u^((−1)/6) )/((1+u)^3 ))+((3u^(−(3/6)) )/((1+u)^3 ))+(u^(−(5/6)) /((1+u)^3 ))du  β(x,y)=∫_0 ^∞ (t^(x−1) /((1+t)^(x+y) ))  Ω=((β((7/6),((11)/6))+3β((5/6),((13)/6))+3β((3/6),((15)/6))+β((1/6),((17)/6)))/6)  =((Γ((7/6))Γ(((11)/6))+3Γ((5/6))Γ(((13)/6))+3Γ((3/6))Γ(((15)/6))+Γ((1/6))Γ(((17)/6)))/(12))  Γ(3−x)=(2−x)(1−x)Γ(1−x)  Γ(x)Γ(1−x)=(π/(sin(πx)))  Ω=(π/(12sin((π/6)))).(1/6).(5/6)+((3π)/(12sin(((5π)/6)))).(7/6).(1/6)+((3π)/(sin((π/6)))).((11)/6).(5/6)  +(π/(12sin((π/6)))).((11)/6).(5/6)

Ω=0dx(x4x2+1)3=0(x2+1)3(x2+1)3(x4x2+1)3dx=0x6+3x4+3x2+1(x6+1)3dxx6=u=0u+3u23+3u13+1(u+1)3.u566du=160u16(1+u)3+3u16(1+u)3+3u36(1+u)3+u56(1+u)3duβ(x,y)=0tx1(1+t)x+yΩ=β(76,116)+3β(56,136)+3β(36,156)+β(16,176)6=Γ(76)Γ(116)+3Γ(56)Γ(136)+3Γ(36)Γ(156)+Γ(16)Γ(176)12Γ(3x)=(2x)(1x)Γ(1x)Γ(x)Γ(1x)=πsin(πx)Ω=π12sin(π6).16.56+3π12sin(5π6).76.16+3πsin(π6).116.56+π12sin(π6).116.56

Commented by Mingma last updated on 14/May/23

Nice!

Answered by MJS_new last updated on 14/May/23

∫(dx/((x^4 −x^2 +1)^3 ))=       [Ostrogradski′s Method]  =((x(7x^6 −5x^4 +7x^2 +4))/((x^4 −x^2 +1)^2 ))+(1/(24))∫((7x^2 +20)/(x^4 −x^2 +1))dx=       [decomposing etc.]  =((x(7x^6 −5x^4 +7x^2 +4))/((x^4 −x^2 +1)^2 ))+((13(√3))/(288))ln ((x^2 +(√3)x+1)/(x^2 −(√3)x+1)) +(9/(16))(arctan (2x+(√3)) +arctan (2x+(√3))) +C  ⇒ answer is ((9π)/(16))

dx(x4x2+1)3=[OstrogradskisMethod]=x(7x65x4+7x2+4)(x4x2+1)2+1247x2+20x4x2+1dx=[decomposingetc.]=x(7x65x4+7x2+4)(x4x2+1)2+133288lnx2+3x+1x23x+1+916(arctan(2x+3)+arctan(2x+3))+Cansweris9π16

Commented by Mingma last updated on 14/May/23

Exactly!

Terms of Service

Privacy Policy

Contact: info@tinkutara.com