Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 192297 by Mastermind last updated on 14/May/23

Answered by witcher3 last updated on 14/May/23

let a=supA,b=SupB⇒∀(x∈Aety∈B)  x+y≤a+b⇒sup(A+B)≤a+b  let M=sup(A+B)  ∀ε>0 ∃x∈A,y∈B such a−ε<x≤a  b−ε<y≤b  ⇒a+b−2ε<x+y∈A+B≤a+b  ⇒∀ε>0 ∃S=x+y∈A+B  such a+b−ε<x+y  ⇒sup(A+B)≥a+b=sup(A)+sup(B)  ⇒sup(A+B)=sup(A)+sup(B)

leta=supA,b=SupB(xAetyB)x+ya+bsup(A+B)a+bletM=sup(A+B)ϵ>0xA,yBsuchaϵ<xabϵ<yba+b2ϵ<x+yA+Ba+bϵ>0S=x+yA+Bsucha+bϵ<x+ysup(A+B)a+b=sup(A)+sup(B)sup(A+B)=sup(A)+sup(B)

Commented by Mastermind last updated on 14/May/23

I do really appreciate    Thank you man

IdoreallyappreciateThankyouman

Answered by witcher3 last updated on 14/May/23

(2),a_n =arctan(n),b_n =arctan(−n)  a_n +b_n =0  supa_n +supb_n =π

(2),an=arctan(n),bn=arctan(n)an+bn=0supan+supbn=π

Commented by Mastermind last updated on 14/May/23

Thank you my BOSS  is that all?

ThankyoumyBOSSisthatall?

Terms of Service

Privacy Policy

Contact: info@tinkutara.com