Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 19238 by Tinkutara last updated on 07/Aug/17

Let ABCD be a parallelogram. Two  points E and F are chosen on the sides  BC and CD, respectively, such that  ((EB)/(EC)) = m, and ((FC)/(FD)) = n. Lines AE and BF  intersect at G. Prove that the ratio  ((AG)/(GE)) = (((m + 1)(n + 1))/(mn)).

$$\mathrm{Let}\:{ABCD}\:\mathrm{be}\:\mathrm{a}\:\mathrm{parallelogram}.\:\mathrm{Two} \\ $$$$\mathrm{points}\:{E}\:\mathrm{and}\:{F}\:\mathrm{are}\:\mathrm{chosen}\:\mathrm{on}\:\mathrm{the}\:\mathrm{sides} \\ $$$${BC}\:\mathrm{and}\:{CD},\:\mathrm{respectively},\:\mathrm{such}\:\mathrm{that} \\ $$$$\frac{{EB}}{{EC}}\:=\:{m},\:\mathrm{and}\:\frac{{FC}}{{FD}}\:=\:{n}.\:\mathrm{Lines}\:{AE}\:\mathrm{and}\:{BF} \\ $$$$\mathrm{intersect}\:\mathrm{at}\:{G}.\:\mathrm{Prove}\:\mathrm{that}\:\mathrm{the}\:\mathrm{ratio} \\ $$$$\frac{{AG}}{{GE}}\:=\:\frac{\left({m}\:+\:\mathrm{1}\right)\left({n}\:+\:\mathrm{1}\right)}{{mn}}. \\ $$

Commented by ajfour last updated on 07/Aug/17

BF^(→) =(m+1)b^� +na^�   BG^(→) =λBF^(→) =λ[(m+1)b^� +na^� ] .

$$\overset{\rightarrow} {\mathrm{BF}}=\left(\mathrm{m}+\mathrm{1}\right)\bar {\mathrm{b}}+\mathrm{n}\bar {\mathrm{a}} \\ $$$$\overset{\rightarrow} {\mathrm{BG}}=\lambda\overset{\rightarrow} {\mathrm{BF}}=\lambda\left[\left(\mathrm{m}+\mathrm{1}\right)\bar {\mathrm{b}}+\mathrm{n}\bar {\mathrm{a}}\right]\:. \\ $$

Commented by ajfour last updated on 07/Aug/17

Commented by ajfour last updated on 07/Aug/17

let B be origin.  BG^(→) =λ[(m+1)b^� +na^� ]   ....(i)  Also BG^(→) =BE^(→) +EG^(→)    Let EG^(→) =μAE^(→)  ⇒ AG^(→) =(1−μ)AE^(→)   ⇒ BG^(→) =mb^� +μ[(n+1)a^� −mb^� ]   ..(ii)  comparing coefficients of a^�  and b^�   in (i) and (ii):  nλ=(n+1)μ  ; (m+1)λ=m(1−μ)  ⇒   ((m(1−μ))/((n+1)μ))= (((m+1)λ)/(nλ))  ((AG)/(GE))=((1−μ)/μ)= (((m+1)(n+1))/(mn)) .

$$\mathrm{let}\:\mathrm{B}\:\mathrm{be}\:\mathrm{origin}. \\ $$$$\overset{\rightarrow} {\mathrm{BG}}=\lambda\left[\left(\mathrm{m}+\mathrm{1}\right)\bar {\mathrm{b}}+\mathrm{n}\bar {\mathrm{a}}\right]\:\:\:....\left(\mathrm{i}\right) \\ $$$$\mathrm{Also}\:\overset{\rightarrow} {\mathrm{BG}}=\overset{\rightarrow} {\mathrm{BE}}+\overset{\rightarrow} {\mathrm{EG}}\: \\ $$$$\mathrm{Let}\:\overset{\rightarrow} {\mathrm{EG}}=\mu\overset{\rightarrow} {\mathrm{AE}}\:\Rightarrow\:\overset{\rightarrow} {\mathrm{AG}}=\left(\mathrm{1}−\mu\right)\overset{\rightarrow} {\mathrm{AE}} \\ $$$$\Rightarrow\:\overset{\rightarrow} {\mathrm{BG}}=\mathrm{m}\bar {\mathrm{b}}+\mu\left[\left(\mathrm{n}+\mathrm{1}\right)\bar {\mathrm{a}}−\mathrm{m}\bar {\mathrm{b}}\right]\:\:\:..\left(\mathrm{ii}\right) \\ $$$$\mathrm{comparing}\:\mathrm{coefficients}\:\mathrm{of}\:\bar {\mathrm{a}}\:\mathrm{and}\:\bar {\mathrm{b}} \\ $$$$\mathrm{in}\:\left(\mathrm{i}\right)\:\mathrm{and}\:\left(\mathrm{ii}\right): \\ $$$$\mathrm{n}\lambda=\left(\mathrm{n}+\mathrm{1}\right)\mu\:\:;\:\left(\mathrm{m}+\mathrm{1}\right)\lambda=\mathrm{m}\left(\mathrm{1}−\mu\right) \\ $$$$\Rightarrow\:\:\:\frac{\mathrm{m}\left(\mathrm{1}−\mu\right)}{\left(\mathrm{n}+\mathrm{1}\right)\mu}=\:\frac{\left(\mathrm{m}+\mathrm{1}\right)\lambda}{\mathrm{n}\lambda} \\ $$$$\frac{\mathrm{AG}}{\mathrm{GE}}=\frac{\mathrm{1}−\mu}{\mu}=\:\frac{\left(\mathrm{m}+\mathrm{1}\right)\left(\mathrm{n}+\mathrm{1}\right)}{\mathrm{mn}}\:. \\ $$

Commented by Tinkutara last updated on 07/Aug/17

Thank you very much Sir!

$$\mathrm{Thank}\:\mathrm{you}\:\mathrm{very}\:\mathrm{much}\:\mathrm{Sir}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com