Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 192397 by Mastermind last updated on 16/May/23

Let f:D(f)⊆R^n →R^m   let ′a′ be an interior point of Dom(f)  and let ′u′ be any vector in R^n , when  is a vector v∈R^m  called the directional  derivative of f at ′a′ along the line  determine by u ?    help!

Letf:D(f)RnRmletabeaninteriorpointofDom(f)andletubeanyvectorinRn,whenisavectorvRmcalledthedirectionalderivativeoffataalongthelinedeterminebyu?help!

Answered by aleks041103 last updated on 21/May/23

let f_i :D(f)⊆R^n →R be the component  functions of f, i.e.  f(a)=(f_1 (a),f_2 (a),...,f_m (a))∈R^m   ⇒in this case:  v=((∂f_1 /∂u)(a),(∂f_2 /∂u)(a),...,(∂f_m /∂u)(a))∈R^m   where (∂/∂u) is the ordinary directional  derivtive, i.e. (∂/∂u)=u∙grad=u∙▽  ⇒v=((u∙grad(f_1 ))(a),(u∙grad(f_2 ))(a),...,(u∙grad(f_m ))(a))∈R^m   in index notation:  v_k =Σ_(s=1) ^n u_s (∂f_k /∂x_s )(a)  or using einstein notation  v_k =u_s ∂_s f_k (a)  or in vector notation  v=((u∙▽)f)(a)

letfi:D(f)RnRbethecomponentfunctionsoff,i.e.f(a)=(f1(a),f2(a),...,fm(a))Rminthiscase:v=(f1u(a),f2u(a),...,fmu(a))Rmwhereuistheordinarydirectionalderivtive,i.e.u=ugrad=uv=((ugrad(f1))(a),(ugrad(f2))(a),...,(ugrad(fm))(a))Rminindexnotation:vk=ns=1usfkxs(a)orusingeinsteinnotationvk=ussfk(a)orinvectornotationv=((u)f)(a)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com