Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 19245 by Tinkutara last updated on 07/Aug/17

Let f(x) be a quadratic polynomial  with integer coefficients such that f(0)  and f(1) are odd integers. Prove that  the equation f(x) = 0 does not have an  integer solution.

$$\mathrm{Let}\:{f}\left({x}\right)\:\mathrm{be}\:\mathrm{a}\:\mathrm{quadratic}\:\mathrm{polynomial} \\ $$$$\mathrm{with}\:\mathrm{integer}\:\mathrm{coefficients}\:\mathrm{such}\:\mathrm{that}\:{f}\left(\mathrm{0}\right) \\ $$$$\mathrm{and}\:{f}\left(\mathrm{1}\right)\:\mathrm{are}\:\mathrm{odd}\:\mathrm{integers}.\:\mathrm{Prove}\:\mathrm{that} \\ $$$$\mathrm{the}\:\mathrm{equation}\:{f}\left({x}\right)\:=\:\mathrm{0}\:\mathrm{does}\:\mathrm{not}\:\mathrm{have}\:\mathrm{an} \\ $$$$\mathrm{integer}\:\mathrm{solution}. \\ $$

Commented by RasheedSindhi last updated on 08/Aug/17

Let f(x)=ax^2 +bx+c  f(0)=c (odd)  f(1)=a+b+c (odd)  c∈O ∧ a+b+c∈O⇒a+b∈E  a+b ∈ E⇒ { ((a,b∈E)),((a,b∈O)) :}  Case−1: a,b∈E ∧ c∈O  Case−2: a,b,c∈O  Continue

$$\mathrm{Let}\:\mathrm{f}\left(\mathrm{x}\right)=\mathrm{ax}^{\mathrm{2}} +\mathrm{bx}+\mathrm{c} \\ $$$$\mathrm{f}\left(\mathrm{0}\right)=\mathrm{c}\:\left(\mathrm{odd}\right) \\ $$$$\mathrm{f}\left(\mathrm{1}\right)=\mathrm{a}+\mathrm{b}+\mathrm{c}\:\left(\mathrm{odd}\right) \\ $$$$\mathrm{c}\in\mathbb{O}\:\wedge\:\mathrm{a}+\mathrm{b}+\mathrm{c}\in\mathbb{O}\Rightarrow\mathrm{a}+\mathrm{b}\in\mathbb{E} \\ $$$$\mathrm{a}+\mathrm{b}\:\in\:\mathbb{E}\Rightarrow\begin{cases}{\mathrm{a},\mathrm{b}\in\mathbb{E}}\\{\mathrm{a},\mathrm{b}\in\mathbb{O}}\end{cases} \\ $$$$\mathrm{Case}−\mathrm{1}:\:\mathrm{a},\mathrm{b}\in\mathbb{E}\:\wedge\:\mathrm{c}\in\mathbb{O} \\ $$$$\mathrm{Case}−\mathrm{2}:\:\mathrm{a},\mathrm{b},\mathrm{c}\in\mathbb{O} \\ $$$$\mathrm{Continue} \\ $$

Answered by RasheedSindhi last updated on 09/Aug/17

Quadratic polynomial whose roots  are p and q is  f(x)=x^2 −(p+q)x+pq  f(0)=pq∈O(given)⇒p,q∈O  f(1)=1−(p+q)+pq∈O(given)  But           p,q∈O⇒p+q∈E  and         f(1)=1−(p+q)+pq∈O      ⇒(odd)−(even)+(odd)      ⇒(odd)+(odd)=(even)∉O  This contradiction proves  that p and q are neither odd  nor even or they are not integers.

$$\mathrm{Quadratic}\:\mathrm{polynomial}\:\mathrm{whose}\:\mathrm{roots} \\ $$$$\mathrm{are}\:\mathrm{p}\:\mathrm{and}\:\mathrm{q}\:\mathrm{is} \\ $$$$\mathrm{f}\left(\mathrm{x}\right)=\mathrm{x}^{\mathrm{2}} −\left(\mathrm{p}+\mathrm{q}\right)\mathrm{x}+\mathrm{pq} \\ $$$$\mathrm{f}\left(\mathrm{0}\right)=\mathrm{pq}\in\mathbb{O}\left(\mathrm{given}\right)\Rightarrow\mathrm{p},\mathrm{q}\in\mathbb{O} \\ $$$$\mathrm{f}\left(\mathrm{1}\right)=\mathrm{1}−\left(\mathrm{p}+\mathrm{q}\right)+\mathrm{pq}\in\mathbb{O}\left(\mathrm{given}\right) \\ $$$$\mathrm{But} \\ $$$$\:\:\:\:\:\:\:\:\:\mathrm{p},\mathrm{q}\in\mathbb{O}\Rightarrow\mathrm{p}+\mathrm{q}\in\mathbb{E}\:\:\mathrm{and} \\ $$$$\:\:\:\:\:\:\:\mathrm{f}\left(\mathrm{1}\right)=\mathrm{1}−\left(\mathrm{p}+\mathrm{q}\right)+\mathrm{pq}\in\mathbb{O} \\ $$$$\:\:\:\:\Rightarrow\left(\mathrm{odd}\right)−\left(\mathrm{even}\right)+\left(\mathrm{odd}\right) \\ $$$$\:\:\:\:\Rightarrow\left(\mathrm{odd}\right)+\left(\mathrm{odd}\right)=\left(\mathrm{even}\right)\notin\mathbb{O} \\ $$$$\mathrm{This}\:\mathrm{contradiction}\:\mathrm{proves} \\ $$$$\mathrm{that}\:\mathrm{p}\:\mathrm{and}\:\mathrm{q}\:\mathrm{are}\:\mathrm{neither}\:\mathrm{odd} \\ $$$$\mathrm{nor}\:\mathrm{even}\:\mathrm{or}\:\mathrm{they}\:\mathrm{are}\:\mathrm{not}\:\mathrm{integers}. \\ $$

Commented by Tinkutara last updated on 09/Aug/17

Thank you very much Sir!

$$\mathrm{Thank}\:\mathrm{you}\:\mathrm{very}\:\mathrm{much}\:\mathrm{Sir}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com