Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 192625 by Subhi last updated on 23/May/23

lim_(x→0) ((sin^4 (πcos(x)))/(1−cos(1−cos(1−cos(x)))))

limx0sin4(πcos(x))1cos(1cos(1cos(x)))

Commented by Subhi last updated on 23/May/23

I got 8π^4

Igot8π4

Answered by ARUNG_Brandon_MBU last updated on 23/May/23

L=lim_(x→0) ((sin^4 (πcosx))/(1−cos(1−cos(1−cosx))))       =lim_(x→0) ((sin^4 (π−((πx^2 )/2)))/(1−(1−(x^8 /(128))))) [sint ∼_(t→0)  t; cost ∼_(t→0) 1−(t^2 /2)]       =lim_(x→0) ((sin^4 (((πx^2 )/2)))/(x^8 /(128)))=lim_(x→0) (((π^4 x^8 )/(16))/(x^8 /(128)))= determinant (((8π^4 )))

L=limx0sin4(πcosx)1cos(1cos(1cosx))=limx0sin4(ππx22)1(1x8128)[sintt0t;costt01t22]=limx0sin4(πx22)x8128=limx0π4x816x8128=8π4

Commented by Subhi last updated on 23/May/23

thanks boss  I solved it by that way↓↓

thanksbossIsolveditbythatway↓↓

Answered by Subhi last updated on 23/May/23

  lim_(x→0) ((sin^4 (πcos(x)))/(1−cos(1−cos(1−cos(x)))))  sin(π−θ) = sin(θ)  x→0       ⇛ cos(x)→1    ⇛  π−πcos(x)→0  lim_(π−πcos(x)→0) ((sin^4 (π−πcos(x)).(π−πcos(x))^4 )/((π−πcos(x))^4 .(1−cos(1−cos(1−cos(x)))))  note that lim_(x→0) ((sin(x))/x)=1  lim_(x→0) (((π−πcos(x))^4 )/(1−cos(1−cos(1−cos(x))))  1−cos(x)=2sin^2 ((x/2))  1−cos(1−cos(1−cos(x))=1−cos(1−cos(2sin^2 ((x/2)))  =1−cos(2sin^2 (sin^2 ((x/2)))=2sin^2 (sin^2 (sin^2 ((x/2)))  lim_(x→0) (((π−πcos(x))^4 )/(2sin^2 (sin^2 (sin^2 ((x/2))))))  x→0  ⇛ (x/2)→0  ⇛sin^2 (x/2)→0⇛sin^2 (sin^2 ((x/2)))→0  lim_(sin^2 (sin^2 ((x/2)))→0) (((π−πcos(x))^4 .(sin^2 (sin^2 ((x/2)))^2 )/(2sin^2 (sin^2 (sin^2 ((x/2)))).sin^4 (sin^2 ((x/2)))))  lim_(x→0) (((π−πcos(x))^4 )/(2sin^4 (sin^2 ((x/2)))))  lim_(sin^2 ((x/2))→0) (((π−πcos(x))^4 .(sin^8 ((x/2))))/(2sin^4 (sin^2 ((x/2))).sin^8 ((x/2))))  lim_(x→0) ((π^4 (1−cos(x))^4 )/(2sin^8 ((x/2)))).(8/8)  1−cos(x)=2sin^2 ((x/2))  (1−cos(x))^4 =16sin^8 ((x/2))  answer = 8π^4

limx0sin4(πcos(x))1cos(1cos(1cos(x)))sin(πθ)=sin(θ)x0cos(x)1ππcos(x)0limππcos(x)0sin4(ππcos(x)).(ππcos(x))4(ππcos(x))4.(1cos(1cos(1cos(x)))notethatlimx0sin(x)x=1limx0(ππcos(x))41cos(1cos(1cos(x))1cos(x)=2sin2(x2)1cos(1cos(1cos(x))=1cos(1cos(2sin2(x2))=1cos(2sin2(sin2(x2))=2sin2(sin2(sin2(x2))limx0(ππcos(x))42sin2(sin2(sin2(x2)))x0x20sin2x20sin2(sin2(x2))0limsin2(sin2(x2))0(ππcos(x))4.(sin2(sin2(x2))22sin2(sin2(sin2(x2))).sin4(sin2(x2))limx0(ππcos(x))42sin4(sin2(x2))limsin2(x2)0(ππcos(x))4.(sin8(x2))2sin4(sin2(x2)).sin8(x2)limx0π4(1cos(x))42sin8(x2).881cos(x)=2sin2(x2)(1cos(x))4=16sin8(x2)answer=8π4

Answered by MM42 last updated on 24/May/23

Another solution  π−πcosx=u ⇒ 1−cosx=(u/π)  ⇒L=lim_(u→0)  ((sin^4 (π−u))/(1−cos(1−cos((u/π))))) =  lim_(u→0)  ((sin^4 (u))/(1−cos((u^2 /(2π^2 ))))) =  lim_(u→0)   (u^4 /(u^4 /(8π^2 ))) = 8π^2   ✓

Anothersolutionππcosx=u1cosx=uπL=limu0sin4(πu)1cos(1cos(uπ))=limu0sin4(u)1cos(u22π2)=limu0u4u48π2=8π2

Terms of Service

Privacy Policy

Contact: info@tinkutara.com