Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 192819 by cherokeesay last updated on 28/May/23

Answered by a.lgnaoui last updated on 28/May/23

△PBM  recrangle en B  ∡PMB=λ  △MAD  MA=(1/2)AD⇒∡AMD=∡MDC=(π/3)  MD=(√(AD^2 +(((AD)/2))^2 ))=((AD(√5))/2)  (AD=AB)  △PMB   et △PNC  semblables   ⇒∡PNC=∡PMB=λ   de plus  λ=θ  +x    (θ=∡DPM)    tanλ=((PB)/(MB)) =((BC+PC)/(BC/2))  △DPC  ((sin x)/(PC))=((cos x)/(CD))⇒PC=CDtan x=BCtan x  ⇒tan λ=((2BC(1+tan x))/(BC))=2(1+tan x)  (1)    △DNP   ((sin (x+(π/3)))/(MP))=((sin θ)/(MD))=((2sin (λ−x))/(AD(√5))) (2)    cos λ=((BC)/(2MP))    MP=((BC)/(2cos λ))  ⇒  ((2sin (x+(π/3))cos λ)/(BC))=((2sin (λ−x))/(BC(√5)))    ⇔sin (x+(π/3))cos λ=(((√5)sin (λ−x))/5)  (1/2)(sin x+(√3) cos x)cos λ=((√5)/5)(sin λcos x−cos λsin x)     (1/2)(tan x+(√3) )cos λ=((√5)/5)(sin λ−cos λtan x)  ⇔(1/2)(tan x+(√3) )=((√5)/5)(tan λ−tan x)    d apres (2)   tan λ=2(1+tan x)      (1/2)(tan  x+(√3) )=((√5)/5)(2+tan x)          tan x   =((((4(√5))/5)−(√3))/(1−((2(√5))/5)))=((4(√5) −5(√3))/(5−2(√5)))       x=tan^(−1) (((4(√5) −5(√3))/(5−2(√5))))    soit:                       x=28,28°

PBMrecrangleenBPMB=λMADMA=12ADAMD=MDC=π3MD=AD2+(AD2)2=AD52(AD=AB)PMBetPNCsemblablesPNC=PMB=λdeplusλ=θ+x(θ=DPM)tanλ=PBMB=BC+PCBC/2DPCsinxPC=cosxCDPC=CDtanx=BCtanxtanλ=2BC(1+tanx)BC=2(1+tanx)(1)DNPsin(x+π3)MP=sinθMD=2sin(λx)AD5(2)cosλ=BC2MPMP=BC2cosλ2sin(x+π3)cosλBC=2sin(λx)BC5sin(x+π3)cosλ=5sin(λx)512(sinx+3cosx)cosλ=55(sinλcosxcosλsinx)12(tanx+3)cosλ=55(sinλcosλtanx)12(tanx+3)=55(tanλtanx)dapres(2)tanλ=2(1+tanx)12(tanx+3)=55(2+tanx)tanx=45531255=4553525x=tan1(4553525)soit:x=28,28°

Commented by a.lgnaoui last updated on 28/May/23

Commented by cherokeesay last updated on 28/May/23

30° tout juste !

30°toutjuste!

Answered by cherokeesay last updated on 28/May/23

Commented by MM42 last updated on 29/May/23

very nice

verynice

Terms of Service

Privacy Policy

Contact: info@tinkutara.com