Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 192855 by pascal889 last updated on 29/May/23

Answered by a.lgnaoui last updated on 29/May/23

 { ((P^2 −2aP−10P+2a^2 +6a  −6=0  (1))),((P^2              −27P         +27a−27=0  (2) )) :}  (1)−(2)⇒ 2a^2 −21a+21+P(17−2a)=0    ⇒      P=((2a^2 −21a+21)/(2a−17))     (3)  ⇒(2)((2(a^2 −((21)/2)a+((21)/2)))/(2a−17))=(((a−((21)/4))^2 −(((63)/(16))))/(a−((17)/2)))  P=(((a−((21)/4))^2 −((63)/(16)))/(a−((17)/2)))  P^2 =(((a−((21)/4))^4 +((63)/(16^2 ))−((63)/8)(a−((21)/4)))/((a−((17)/2))^2 ))    (2)  P^2 =27(P−a+1)              =27((((a−((21)/4))^2 −((63)/(16)))/(a−((17)/2)))−a+1)             =27[(((4a−21)^2 −63)/(8(2a−17)))−(((16a−136)(a+1))/(8(2a−17)))]  =27[((21^2 −168a−16a +136a  +136−63)/(8(2a−17))]       P^2 =27×((38−6a)/(2a−17))         (l)⇔P^2 −2(a+5)P+2(a^2 +3a−3)=0    ((27(38−6a))/(2a−17))−2(a+5)(((4a−21)^2 −63)/(4(2a−17)))+2(a^2 +3a−3)=0    4×27(38−6a)−2(a+5)[4a−21)^2 −63]  +8(a^2 +3a−3)=0      998−162a−(2a+10)(16a^2 −168a−163)  +8(a^2 +3a−3)(2a−17)=0    (998+1630−408)−16a^3 −  (336−160−136−48)a^2 (+326−162   +1680−408−48)a             4a^3 +2a^2 −347a+555=0    ⇒a={−10,226633 ;  1,669079   ;8,097282}    ⇒P=f(a)=((2a^2 −21a+21)/(2a−17))

{P22aP10P+2a2+6a6=0(1)P227P+27a27=0(2)(1)(2)2a221a+21+P(172a)=0P=2a221a+212a17(3)(2)2(a2212a+212)2a17=(a214)2(6316)a172P=(a214)26316a172P2=(a214)4+63162638(a214)(a172)2(2)P2=27(Pa+1)=27((a214)26316a172a+1)=27[(4a21)2638(2a17)(16a136)(a+1)8(2a17)]=27[212168a16a+136a+136638(2a17]P2=27×386a2a17(l)P22(a+5)P+2(a2+3a3)=027(386a)2a172(a+5)(4a21)2634(2a17)+2(a2+3a3)=04×27(386a)2(a+5)[4a21)263]+8(a2+3a3)=0998162a(2a+10)(16a2168a163)+8(a2+3a3)(2a17)=0(998+1630408)16a3(33616013648)a2(+326162+168040848)a4a3+2a2347a+555=0a={10,226633;1,669079;8,097282}P=f(a)=2a221a+212a17

Answered by York12 last updated on 30/May/23

p^2 +2a^2 −2ap+6a−10p−6=0 ......(i)  p^2 −27p+27a−27=0 .......(ii)  from (ii)  p^2 −27(p−a+1) →(I)  then (i) can be written as   p^2  −27(p−a+1) +17p −21a +21+2a^2 −2ap  from (I)   17p −21a +21 +2a^2  −2ap =0  2ap −17p −2a^2 +21a−21=0  p(2a−17)=2a^2 −21a+21  p=((2a^2 −21a+21)/(2a−17))

p2+2a22ap+6a10p6=0......(i)p227p+27a27=0.......(ii)from(ii)p227(pa+1)(I)then(i)canbewrittenasp227(pa+1)+17p21a+21+2a22apfrom(I)17p21a+21+2a22ap=02ap17p2a2+21a21=0p(2a17)=2a221a+21p=2a221a+212a17

Terms of Service

Privacy Policy

Contact: info@tinkutara.com