Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 193192 by 073 last updated on 07/Jun/23

solve and solution  Ω=∫(√(sin^(−1) x))dx=?

solveandsolutionΩ=sin1xdx=?

Answered by Frix last updated on 07/Jun/23

∫(√(sin^(−1)  x)) dx =^([t=sin^(−1)  x])   =∫(√t) cos t dt =^([by parts])   =(√t) sin t −(1/2)∫((sin t)/( (√t)))dt            (1/2)∫((sin t)/( (√t)))dt =^([u=(√((2t)/π))])             =(√(π/2))∫sin ((πu^2 )/2) du =^([Fresnel])             =(√(π/2))S (u)  ⇒  Ω=x(√(sin^(−1)  x)) −(√(π/2)) S ((√((2sin^(−1)  x)/π))) +C

sin1xdx=[t=sin1x]=tcostdt=[byparts]=tsint12sinttdt12sinttdt=[u=2tπ]=π2sinπu22du=[Fresnel]=π2S(u)Ω=xsin1xπ2S(2sin1xπ)+C

Terms of Service

Privacy Policy

Contact: info@tinkutara.com