Question and Answers Forum

All Questions      Topic List

Vector Calculus Questions

Previous in All Question      Next in All Question      

Previous in Vector Calculus      Next in Vector Calculus      

Question Number 193204 by Mingma last updated on 07/Jun/23

Answered by witcher3 last updated on 08/Jun/23

H_n =Σ_(k=1) ^n (1/k)=∫_0 ^1 Σ_(k=1) ^n x^(k−1) dx  =∫_0 ^1 ((1−x^n )/(1−x))dx  =lim_(a→1) ∫_0 ^a ((1−x^n )/(1−x))dx=lim_(a→1) [_0 ^a −ln(1−x)(1−x^n )]  −∫nx^(n−1) ln(1−x)dx  ⇔H_n =−n∫_0 ^1 x^(n−1) ln(1−x)  ⇔(H_n /n^3 )=−∫_0 ^1 (x^(n−1) /n^3 )ln(1−x)dx  ⇒Σ_(n≥1) (H_n /n^3 )=−∫_0 ^1 (1/x)(Σ_(n≥1) (x^n /n^2 ))ln(1−x)dx  =−∫_0 ^1 ((ln(1−x))/x)Li_2 (x)dx  Li_2 (z)=−∫_0 ^z ((ln(1−x))/x)dx  ⇔Σ_(n≥1) (H_n /n^3 )=(1/2)Li_2 ^2 (1)=(1/2)((π^2 /6))^2 =(π^4 /(72))

Hn=nk=11k=10nk=1xk1dx=011xn1xdx=lima10a1xn1xdx=lima1[0aln(1x)(1xn)]nxn1ln(1x)dxHn=n01xn1ln(1x)Hnn3=01xn1n3ln(1x)dxn1Hnn3=011x(n1xnn2)ln(1x)dx=01ln(1x)xLi2(x)dxLi2(z)=0zln(1x)xdxn1Hnn3=12Li22(1)=12(π26)2=π472

Commented by Mingma last updated on 09/Jun/23

Perfect ��

Terms of Service

Privacy Policy

Contact: info@tinkutara.com