Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 193371 by gloriousman last updated on 11/Jun/23

Reduce to first order and solve ,  showing each step in detail.  1. y′′ +(y′)^3 siny=0  2. y′′=1+(y′)^2

Reducetofirstorderandsolve,showingeachstepindetail.1.y+(y)3siny=02.y=1+(y)2

Answered by witcher3 last updated on 11/Jun/23

y′′+(y′)^3 sin(y)=0....(A)  first we do not know how to starte caue  just y′ cos(y(x))=z  z′=y′′cos(y)−y′^2 sin(y)...E  cosy=(z/(y′))..if y′=0⇒y=c solution suppose ∃y#constante  and y∈C_2 [a,b]⇒∃I⊂[a,b] y′≠0  this justify division by y′  E⇔z′=((zy′′)/(y′))−y′^2 sin(y)  ⇔z′y′−zy^′ ′−y′′=−y′^3 sin(y)−y′′=0byA  ⇔z′y′−y′′(z−1)=0  ⇒((z′y′−y′′(z−1))/((z−1)^2 ))=0  ⇔(d/dx)(((−y′)/((z−1))))=0  ⇒−((y′)/(z−1))=c  y′=c(z−1)⇒z=((y′)/c)+1=ay′+1  ⇒y′cos(y)−ay′=1⇒sin(y)−ay=x+c  ⇒   { ((y′′+y′^3 sin(y)=0)),((sin(y)−ay=x+c)) :}

y+(y)3sin(y)=0....(A)firstwedonotknowhowtostartecauejustycos(y(x))=zz=ycos(y)y2sin(y)...EYou can't use 'macro parameter character #' in math modeandyC2[a,b]I[a,b]y0thisjustifydivisionbyyEz=zyyy2sin(y)Prime causes double exponent: use braces to clarifyzyy(z1)=0zyy(z1)(z1)2=0ddx(y(z1))=0yz1=cy=c(z1)z=yc+1=ay+1ycos(y)ay=1sin(y)ay=x+c{y+y3sin(y)=0sin(y)ay=x+c

Answered by witcher3 last updated on 11/Jun/23

2,y′=z⇔z′=1+z^2 ⇒∫(dz/(z^2 +1))=∫1=x+c=arctan(z)  ⇒z=tan(x+c),∀x∈R−{(π/2)+kπ−c}  z=y′=tan(x+c)⇒y=−ln∣cos(x+c)∣+c_1   c,c_1 ∈R

2,y=zz=1+z2dzz2+1=1=x+c=arctan(z)z=tan(x+c),xR{π2+kπc}z=y=tan(x+c)y=lncos(x+c)+c1c,c1R

Answered by aleks041103 last updated on 12/Jun/23

1. y′′+(y′)^3 sin(y)=0  ⇒−((y′′)/((y′)^2 ))+(−sin(y))y′=0  ⇒((1/(y′))+cos(y))′=0⇒(1/(y′))+cos(y)=a=const.  ⇒y′=(1/(a−cos(y)))  ⇒(a−cos(y))dy=dx  ⇒ay−sin(y)+b=x, a,b=const.    2.y′′=1+(y′)^2   ⇒((y′′)/(1+(y′)^2 ))=(actan(y′))′=1  ⇒arctan(y′)=x+a, a=const.  ⇒y′=(dy/dx)=tan(x+a)  ⇒dy=tan(x+a)dx  ⇒y=∫((sin(x+a))/(cos(x+a)))dx=−∫((d(cos(x+a)))/(cos(x+a)))  ⇒y=−ln(cos(x+a))+b, a,b=const.

1.y+(y)3sin(y)=0y(y)2+(sin(y))y=0(1y+cos(y))=01y+cos(y)=a=const.y=1acos(y)(acos(y))dy=dxaysin(y)+b=x,a,b=const.2.y=1+(y)2y1+(y)2=(actan(y))=1arctan(y)=x+a,a=const.y=dydx=tan(x+a)dy=tan(x+a)dxy=sin(x+a)cos(x+a)dx=d(cos(x+a))cos(x+a)y=ln(cos(x+a))+b,a,b=const.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com