All Questions Topic List
Limits Questions
Previous in All Question Next in All Question
Previous in Limits Next in Limits
Question Number 193408 by cortano12 last updated on 13/Jun/23
⏟―
Answered by MM42 last updated on 13/Jun/23
limn→∞1n×(1−(ean)n×1ean1−ean)=limn→∞1n×(ean−(ean)n1−ean)×1ean=limn→∞1n×1ean×(ean−1+1−(ean)n1−ean)=limn→∞1n×1ean(ean−11−ean)+limn→∞1n×1ean×(1−(ean)n1−ean)=limn→∞(1n1−ean)=limn→∞(−1n2an2ean)=−1a=limn→∞1n×1ean×(1−(ean)n1−ean)=limn→∞1n(1+ean+e2an+...+enan)=limn→∞∑ni=1eina×1n=∫01eaxdx=ea−1a⇒ans=ea−2a✓
Terms of Service
Privacy Policy
Contact: info@tinkutara.com