Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 193411 by cortano12 last updated on 13/Jun/23

Commented by BaliramKumar last updated on 13/Jun/23

put   x = cos2θ

putx=cos2θ

Answered by Frix last updated on 13/Jun/23

∫_0 ^1 (√((1−x)/(1+x)))dx =^(t=(√((1+x)/(1−x))))    =4∫_1 ^∞ (dt/((t^2 +1)^2 ))=[((2t)/(t^2 +1))+2tan^(−1)  t]_1 ^∞ =  =(π/2)−1

101x1+xdx=t=1+x1x=41dt(t2+1)2=[2tt2+1+2tan1t]1==π21

Answered by Subhi last updated on 13/Jun/23

put x=cos(θ) ⇛ dx=−sin(θ).dθ  ∫_0 ^1 (√((1−cos(θ))/(1+cos(θ)))).−sin(θ)dθ  −∫_0 ^1 tan((θ/2)).sin(θ)dθ ⇛ −2∫((sin((θ/2)))/(cos((θ/2)))).sin((θ/2)).cos((θ/2))dθ  −2∫sin^2 ((θ/2))dθ ⇛ −∫1−cos(θ)dθ ⇛sin(θ)−θ  x=(√(1−sin^2 (θ))) ⇛ sin(θ)=(√(1−x^2 ))  [(√(1−x^2 ))−cos^(−1) (x)]_0 ^1  = 0−(1−(π/2))=(π/2)−1

putx=cos(θ)dx=sin(θ).dθ011cos(θ)1+cos(θ).sin(θ)dθ01tan(θ2).sin(θ)dθ2sin(θ2)cos(θ2).sin(θ2).cos(θ2)dθ2sin2(θ2)dθ1cos(θ)dθsin(θ)θx=1sin2(θ)sin(θ)=1x2[1x2cos1(x)]01=0(1π2)=π21

Terms of Service

Privacy Policy

Contact: info@tinkutara.com