Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 193464 by Mingma last updated on 14/Jun/23

Commented by Frix last updated on 14/Jun/23

For any triangle  r_n =((cδ)/(2((a+b+c)c+(n−1)δ)))       [δ=(√((a+b+c)(−a+b+c)(a−b+c)(a+b−c)))  For a rectangular triangle with c=(√(a^2 +b^2 ))  r_n =((ab(√(a^2 +b^2 )))/(a^2 +2(n−1)ab+b^2 +(a+b)(√(a^2 +b^2 ))))  With a=8∧b=15 ⇒ c=17  r_n =((51)/(6n+11))

Foranytrianglern=cδ2((a+b+c)c+(n1)δ)[δ=(a+b+c)(a+b+c)(ab+c)(a+bc)Forarectangulartrianglewithc=a2+b2rn=aba2+b2a2+2(n1)ab+b2+(a+b)a2+b2Witha=8b=15c=17rn=516n+11

Commented by Mingma last updated on 15/Jun/23

Perfect ��

Commented by a.lgnaoui last updated on 15/Jun/23

in terme a b c?

intermeabc?

Answered by a.lgnaoui last updated on 15/Jun/23

∡DCM=((∡C)/2)       ∡EBN=((∡B)/2)  BC=BMcos ((∡C)/2)+CNcos ((∡B)/2)+12r  posons  ∡C=θ      ∡B=ϕ=90−θ  ⇒cos (𝛉/2)=(√((a+c)/(2c)))      cos (𝛟/2)=(√((b+c)/(2c)))    ⇒BC=BM(√(((a+c)/(2c)) )) +CN(√((b+c)/(2c))) +12r(1)      sin (𝛉/2)=(r/(BM))    BM=(r/(sin (𝛉/2)))=r(√((2c)/(c−a)))                               CN=r(√((2c)/(c−b)))   (1)⇔  BC=r(√((2c)/(c−a))) (√((a+c)/(2c))) +r(√((2c)/(c−b))) (√((b+c)/(2c))) +12r              BC =r(12+(√((a+c)/(c−a))) +(√(((b+c)/(c−b)) ))  )       ABC  triangld rectangle         BC^2 =a^2 +b^2 =c^2        c=(√(a^2 +b^2 ))           (√(a^2 +b^2  )) =r(12+(√((a+c)/(c−a))) +(√((b+c)/(c−b))) )      soit                       r=(c/(12+(√((a+c)/(c−a))) +(√((b+c)/(c−b)))))       { ((a=8          b=  15         c=17)),((     r=((17)/(12+(√((25)/9)) +(√((32)/2))))=((17)/(16+(5/3))))) :}    soit                 r  =((51)/(53))  cas general   pour n cercles de rayon r         r    =(c/(2(n−1)+(√((a+c)/(c−a))) +(√((b+c)/(c−b)))))

DCM=C2EBN=B2BC=BMcosC2+CNcosB2+12rposonsC=θB=φ=90θcosθ2=a+c2ccosφ2=b+c2cBC=BMa+c2c+CNb+c2c+12r(1)sinθ2=rBMBM=rsinθ2=r2ccaCN=r2ccb(1)BC=r2ccaa+c2c+r2ccbb+c2c+12rBC=r(12+a+cca+b+ccb)ABCtriangldrectangleBC2=a2+b2=c2c=a2+b2a2+b2=r(12+a+cca+b+ccb)soitr=c12+a+cca+b+ccb{a=8b=15c=17r=1712+259+322=1716+53soitr=5153casgeneralpourncerclesderayonrr=c2(n1)+a+cca+b+ccb

Commented by a.lgnaoui last updated on 15/Jun/23

Terms of Service

Privacy Policy

Contact: info@tinkutara.com