Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 193511 by Lekhraj last updated on 15/Jun/23

Answered by a.lgnaoui last updated on 17/Jun/23

∡OAE=α   OA=OB=OF=R  ⇒∡OAF=∡OFA=α  ⇒cos α=((AF)/(2R))=((11)/(2R)) ⇒     R=((11)/(2cos 𝛂)) (1)  Surface triangle (AOE) est:             S=((OA×AEsin 𝛂)/2)=((11×4sin 𝛂)/(cos 𝛂))               S=44tan𝛂   (2)         avec { ((AE=16)),((OA=R=)) :}   •  triangle  ( OBF)   BF^2 =2R^2 (1−cos ϕ)   (ϕ=(π/2) −(π−2α)=2α−(π/2)   )  ⇒  BF^2 =2R^2 (1−sin 2𝛂)              (3)  •triangle (ABE)  AE⊥BE    (BE=r)  AB^2 =AE^2 +r^2 ⇒     2R^2 =16^2 +r^2   •BEF   BF^2 =BE^2 +EF^2 =r^2 +25                         =2R^2 −231                (4)     2R^2 (1−sin 2𝛂)=2R^2 −231     2R^2 sin 2𝛂−231=0       2(((11^2 )/(4cos^2 𝛂)))sin 2𝛂=231  (sin 2α=((2t)/(1+t^2 )),  (1/(cos^2 𝛂))=1+t^2 ;  t=tan α)        121t=231        t=((231)/(121))       (5)  dans l expression(2)         S=44tan 𝛂=((924)/(11))               Surface Triangle (AOE)  =84

OAE=αOA=OB=OF=ROAF=OFA=αcosα=AF2R=112RR=112cosα(1)Surfacetriangle(AOE)est:S=OA×AEsinα2=11×4sinαcosαS=44tanα(2)avec{AE=16OA=R=triangle(OBF)BF2=2R2(1cosφ)(φ=π2(π2α)=2απ2)BF2=2R2(1sin2α)(3)triangle(ABE)AEBE(BE=r)AB2=AE2+r22R2=162+r2BEFBF2=BE2+EF2=r2+25=2R2231(4)2R2(1sin2α)=2R22312R2sin2α231=02(1124cos2α)sin2α=231(sin2α=2t1+t2,1cos2α=1+t2;t=tanα)121t=231t=231121(5)danslexpression(2)S=44tanα=92411SurfaceTriangle(AOE)=84

Commented by a.lgnaoui last updated on 17/Jun/23

Commented by Lekhraj last updated on 26/Jun/23

Thank a lot for this wonderfull solution.

Thankalotforthiswonderfullsolution.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com