All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 193526 by SaRahAli last updated on 16/Jun/23
Answered by MM42 last updated on 16/Jun/23
I=∫sinx×cosxsinx+cos2xdx=−∫sinx×cosxsinx−sinx−1dxletsinx=u⇒cosxdx=du⇒I=−∫uduu2−u−1du=∫Au−u1du+∫Bu−u2duthesolutionisverysimple
Answered by Subhi last updated on 16/Jun/23
∫sin(x)tan(x)+cos(x)dx⇛∫sin(x)sin(x)cos(x)+cos(x)∫sin(x).cos(x)sin(x)+1−sin2(x)⇛sin2(x)=u⇛2sin(x)cos(x)dx=du−12∫duu−u−1⇛u=v⇛12udu=dv−12∫2vv2−v−1dv⇛−∫vv2−v−1⇛−∫av−1+52+bv−1−52av−a.1−52+bv−b.1+52a+b=1↬−1−52a−1+52b=05a=1+52⇛a=5+510⇛b=5−510−5+510∫1v−1+52−5−510∫1v−1−52−5+510.ln∣sin(x)−1+52∣−5−510.ln∣sin(x)−1−52∣
Terms of Service
Privacy Policy
Contact: info@tinkutara.com