Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 193526 by SaRahAli last updated on 16/Jun/23

Answered by MM42 last updated on 16/Jun/23

I=∫ ((sinx×cosx)/(sinx+cos^2 x)) dx=−∫ ((sinx×cosx)/(sinx−sinx−1)) dx  let   sinx=u⇒cosxdx=du  ⇒I=−∫ ((udu)/(u^2 −u−1)) du =∫ (A/(u−u_1 )) du +∫ (B/(u−u_2 )) du   the solution is very simple

I=sinx×cosxsinx+cos2xdx=sinx×cosxsinxsinx1dxletsinx=ucosxdx=duI=uduu2u1du=Auu1du+Buu2duthesolutionisverysimple

Answered by Subhi last updated on 16/Jun/23

∫((sin(x))/(tan(x)+cos(x)))dx  ⇛ ∫((sin(x))/(((sin(x))/(cos(x)))+cos(x)))  ∫((sin(x).cos(x))/(sin(x)+1−sin^2 (x))) ⇛ sin^2 (x)=u ⇛ 2sin(x)cos(x)dx=du  ((−1)/2)∫(du/(u−(√u)−1))  ⇛ (√u)=v ⇛ (1/(2(√u)))du=dv  ((−1)/2)∫((2v )/(v^2 −v−1))dv ⇛ −∫(v/(v^2 −v−1)) ⇛ −∫(a/(v−((1+(√5))/2)))+(b/(v−((1−(√5))/2)))  av−a.((1−(√5))/2)+bv−b.((1+(√5))/2)  a+b = 1      ↬  −((1−(√5))/2)a − ((1+(√5))/2)b=0  (√5)a = ((1+(√5))/2)  ⇛ a = ((5+(√5))/(10))  ⇛ b = ((5−(√5))/(10))    −((5+(√5))/(10))∫(1/(v−((1+(√5))/2))) −((5−(√5))/(10))∫(1/(v−((1−(√5))/2)))  −((5+(√5))/(10)).ln∣sin(x)−((1+(√5))/2)∣−((5−(√5))/(10)).ln∣sin(x)−((1−(√5))/2)∣

sin(x)tan(x)+cos(x)dxsin(x)sin(x)cos(x)+cos(x)sin(x).cos(x)sin(x)+1sin2(x)sin2(x)=u2sin(x)cos(x)dx=du12duuu1u=v12udu=dv122vv2v1dvvv2v1av1+52+bv152ava.152+bvb.1+52a+b=1152a1+52b=05a=1+52a=5+510b=55105+5101v1+5255101v1525+510.lnsin(x)1+525510.lnsin(x)152

Terms of Service

Privacy Policy

Contact: info@tinkutara.com