All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 193538 by cortano12 last updated on 16/Jun/23
∫dxx6+1=?
Answered by Subhi last updated on 16/Jun/23
∫1(x2+1)(x4−x2+1)⇛∫ax2+1+bx2+cx+dx4−x2+1ax4−ax2+a+bx4+bx2+cx3+cx+dx2+d(a+b)x4+(b−a+d)x2+cx3+cx+(d+a)c=0⇛d+a=1⇛a+b=0⇛b−a+d=02d+b=1⇛d+2b=0b=−13⇛d=23⇛a=1313∫1x2+1+13∫−x2+2x4−x2+1⇛tan−1(x)3−13∫x2−2x4−x2+1∫x2−2x4−x2+1↬∫x2−2(x2+1)2−3x2↬∫x2−2(x2−3x+1)(x2+3x+1)=∫ex+fx2−3x+1+gx+hx2+3x+1ex3+3ex2+ex+fx2+3fx+f+gx3−3gx2+gx+hx2−3hx+h(e+g)x3+(3e+f−3g+h)x2+(e+3f+g−3h)x+(f+h)e+g=0⇛3(e−g)+f+h=1⇛f+h=−2e+g+3(f−h)=0⇛f−h=0⇛f=−1⇛h=−1e−g=3⇛e=32⇛g=−32∫32x−1x2−3x+1+∫−32x−1x2+3x+1∫34.2x−3.34−14x2−3x+1−∫34.2x+3.34+14x2+3x+134.ln∣x2−3x+1∣−34.ln∣x2+3x+1∣−14∫1x2−3x+1−14∫1x2+3x+1∫1x2−3x+1⇛∫1(x−32)2+14⇛4∫1(2x−3)2+12x−3=v⇛2dx=dv2∫dvv2+1⇛2tan−1(v)=2tan−1(2x−3)∫1x2+3x+1⇛4∫1(2x+3)2+1=2tan−1(2x+3)13∫−x2+2x4−x2+1=312.ln∣x2+3x+1x2−3x+1∣+16(arctan(2x−3)+arctan(2x+3))∫1x6+1=312.ln∣x2+3x+1x2−3x+1∣+2arctan(x)+arctan(2x−3)+arctan(2x+3)6
Answered by aba last updated on 16/Jun/23
∫dxx6+1=∫x2+1−x2(x2+1)(x4−x2+1)dx=∫x2+1(x2+1)(x4−x2+1)dx−∫x2x6+1dx=12∫(x2+1)−(x2−1)x4−x2+1dx−∫x2(x3)2+1dx=12∫1+1x2x2−1+1x2dx−12∫1−1x2x2−1+1x2dx−∫x2(x3)2+1dx=12∫1+1x2(x−1x)2+1dx+12∫1−1x23−(x+1x)2dx−∫x2(x3)2+1dx=12arctan(x−1x)+123arcot(13(x+1x))−13arctan(x3)+k
Terms of Service
Privacy Policy
Contact: info@tinkutara.com