All Questions Topic List
Limits Questions
Previous in All Question Next in All Question
Previous in Limits Next in Limits
Question Number 193563 by SaRahAli last updated on 16/Jun/23
Answered by Gamil last updated on 16/Jun/23
Answered by Subhi last updated on 16/Jun/23
limx→π4sin3(x)−cos3(x).(π4−x)sin(π4−x)(π4−x)limx→π4sin3(x)−cos3(x)(π4−x)⇛(sin(x)−cos(x))(((sin(x)+cos(x))2−sin(x)cos(x))(π4−x)limx→π4−cos(2x)(sin(x)+cos(x))(π4−x)+(cos(x)−sin(x)sin(2x)2(π4−x).sin(x)+cos(x)sin(x)+cos(x)limx→π4−sin(2(π4−x))(sin(x)+cos(x))(π4−x)+sin(4(π4−x)4(π4−x).(sin(x)+cos(x))limx→π4−2(sin(x)+cos(x))+1sin(x)+cos(x)=−22+22=−322
Answered by mnjuly1970 last updated on 16/Jun/23
limx→π4sin3(x)−cos3(x)sin(π4−x)=?limx→π4−2sin(π4−x)(1+12sin(2x))sin(π4−x)=−2.(1+12sin(π2))=−322hint:sin(x)−cos(x)=2sin(x−π4)sin3(x)−cos3(x)=(sin(x)−cos(x))(1+12sin(2x))◼
Terms of Service
Privacy Policy
Contact: info@tinkutara.com