All Questions Topic List
Trigonometry Questions
Previous in All Question Next in All Question
Previous in Trigonometry Next in Trigonometry
Question Number 193646 by Shlock last updated on 17/Jun/23
Answered by som(math1967) last updated on 17/Jun/23
(cos2x+sin2x)2−2sin2xcos2x=1−12(2sinxcosx)2=1−12×sin22x=1−14×2sin22x=1−14(1−cos4x)=(3+cos4x)×14
Answered by deleteduser1 last updated on 17/Jun/23
cos4(x)+sin4(x)=(cos2x+sin2x)2−2(sinxcosx)2=1−(22sin(2x))2=1−sin2(2x)2(3+cos(4x)4)=(3+1−2sin2(2x)4)=1−12(sin2(2x))⇒cos4x+sin4x=3+cos(4x)4=1−sin2(2x)2
Answered by aba last updated on 18/Jun/23
(cos2x+sin2x)2=cos4x+sin4x+12sin22x⇒cos4x+sin4x=1−12(1−cos(2×2x)2)⇒cos4x+sin4x=3+cos(4x)4
Terms of Service
Privacy Policy
Contact: info@tinkutara.com