Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 193670 by mokys last updated on 17/Jun/23

show that ∫_c  e^(1/z^2 )  dz = 0 when ∣z∣ <1

showthatce1z2dz=0whenz<1

Commented by mokys last updated on 17/Jun/23

?????

?????

Answered by Rajpurohith last updated on 19/Jun/23

You need to be aware that for ∣z∣<1  except for   z=0 , the function f(z)=e^(1/z^2 )  is a power series.  However dont try to use Residue theorem!!!   as z=0 is an isolated essential singularity.  i.e, for z≠0 and ∣z∣<1 , e^(1/z^2 ) =1+Σ_(n=1) ^∞ (1/z^(2n) )  If C: ∣z∣=1,  I=∮_C e^((1/z^2 ) ) dz=∮_C (1+Σ_(n=1) ^∞ (1/z^(2n) ))=0+Σ_(n=1) ^∞ {∮_C (1/z^(2n) )dz}  C : ∣z∣=1 in polar form looks like,  (r=1,0≤θ≤2π) so z = e^(iθ)  ,  0≤θ≤2π  I=Σ_(n=0) ^∞ {∫_0 ^( 2π) (1/e^(2inθ) ) .i.e^(iθ)  dθ}=i.Σ_(n=0) ^∞ {∫_0 ^( 2π) (dθ/e^((2n−1)iθ) )}  =iΣ_(n=0) ^∞ {∫_0 ^( 2π) e^((1−2n)iθ) dθ}=((1/i).(i/(1−2n)))Σ_(n=0) ^∞ {e^((1−2n)iθ) }_0 ^(2π)   =(1/(1−2n)) Σ_(n=0) ^∞ (e^((1−2n)2πi) −1)=0     ■

Youneedtobeawarethatforz∣<1exceptforz=0,thefunctionf(z)=e1z2isapowerseries.HoweverdonttrytouseResiduetheorem!!!asz=0isanisolatedessentialsingularity.i.e,forz0andz∣<1,e1z2=1+n=11z2nIfC:z∣=1,I=Ce1z2dz=C(1+n=11z2n)=0+n=1{C1z2ndz}C:z∣=1inpolarformlookslike,(r=1,0θ2π)soz=eiθ,0θ2πI=n=0{02π1e2inθ.i.eiθdθ}=i.n=0{02πdθe(2n1)iθ}=in=0{02πe(12n)iθdθ}=(1i.i12n)n=0{e(12n)iθ}02π=112nn=0(e(12n)2πi1)=0

Terms of Service

Privacy Policy

Contact: info@tinkutara.com