All Questions Topic List
None Questions
Previous in All Question Next in All Question
Previous in None Next in None
Question Number 193670 by mokys last updated on 17/Jun/23
showthat∫ce1z2dz=0when∣z∣<1
Commented by mokys last updated on 17/Jun/23
?????
Answered by Rajpurohith last updated on 19/Jun/23
Youneedtobeawarethatfor∣z∣<1exceptforz=0,thefunctionf(z)=e1z2isapowerseries.HoweverdonttrytouseResiduetheorem!!!asz=0isanisolatedessentialsingularity.i.e,forz≠0and∣z∣<1,e1z2=1+∑∞n=11z2nIfC:∣z∣=1,I=∮Ce1z2dz=∮C(1+∑∞n=11z2n)=0+∑∞n=1{∮C1z2ndz}C:∣z∣=1inpolarformlookslike,(r=1,0⩽θ⩽2π)soz=eiθ,0⩽θ⩽2πI=∑∞n=0{∫02π1e2inθ.i.eiθdθ}=i.∑∞n=0{∫02πdθe(2n−1)iθ}=i∑∞n=0{∫02πe(1−2n)iθdθ}=(1i.i1−2n)∑∞n=0{e(1−2n)iθ}02π=11−2n∑∞n=0(e(1−2n)2πi−1)=0◼
Terms of Service
Privacy Policy
Contact: info@tinkutara.com