Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 193804 by Mastermind last updated on 20/Jun/23

Ques. 6        Let (G, ∗) be a group. and let  C={c∈G : c∗a = a∗c ∀a∈G}. Prove  that C is subgroup of G. hence or   otherwise show that C is Abelian.    [Note C is called the center of group G]    Ques. 7       If (G, ∗) is a group such that (a∗b)^2    = a^2 ∗b^2  (multiplicatively) for all   a,b∈G. Show that G must be Abelian

Ques.6Let(G,)beagroup.andletC={cG:ca=acaG}.ProvethatCissubgroupofG.henceorotherwiseshowthatCisAbelian.[NoteCiscalledthecenterofgroupG]Ques.7If(G,)isagroupsuchthat(ab)2=a2b2(multiplicatively)foralla,bG.ShowthatGmustbeAbelian

Answered by Rajpurohith last updated on 20/Jun/23

  (7)I shall omit the notation ∗.  i.e, By ab I mean a∗b.  Given that (ab)^2 =a^2 b^2       ∀a,b∈G  ⇒(ab)(ab)=aabb                  ∀a,b∈G  ⇒abab=aabb                         ∀a,b∈G  ⇒a^(−1) (abab)b^(−1) =a^(−1) (aabb)b^(−1)    ∀a,b∈G  ⇒ba=ab    ∀ a,b∈G  ⇒G is Abelian.      ■

(7)Ishallomitthenotation.i.e,ByabImeanab.Giventhat(ab)2=a2b2a,bG(ab)(ab)=aabba,bGabab=aabba,bGa1(abab)b1=a1(aabb)b1a,bGba=aba,bGGisAbelian.

Commented by Mastermind last updated on 20/Jun/23

Thank you so much, God will bless you Inshallah

Thankyousomuch,GodwillblessyouInshallah

Answered by gatocomcirrose last updated on 20/Jun/23

Note that e∈C since e∗a=a∗e, ∀a∈G⇒C≠∅  Let x, y∈C,  ⇒x∗a=a∗x⇒a=x^(−1) ∗a∗x⇒a∗x^(−1) =x^(−1) ∗a, ∀a∈G  ⇒x^(−1) ∈G  (x∗y)∗a=x∗(y∗a)=x∗(a∗y)=(x∗a)∗y  =(a∗x)∗y=a∗(x∗y), ∀a∈G⇒x∗y ∈G    Then C<G (subgroup).    Let x,y∈C, since C<G∴x,y∈G  (x∈C)⇒x∗a=a∗x, ∀a∈G  for a=y∈G⇒x∗y=y∗x⇒C is abelian

NotethateCsinceea=ae,aGCLetx,yC,xa=axa=x1axax1=x1a,aGx1G(xy)a=x(ya)=x(ay)=(xa)y=(ax)y=a(xy),aGxyGThenC<G(subgroup).Letx,yC,sinceC<Gx,yG(xC)xa=ax,aGfora=yGxy=yxCisabelian

Commented by Mastermind last updated on 20/Jun/23

Thank you my man

Thankyoumyman

Terms of Service

Privacy Policy

Contact: info@tinkutara.com