Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 193886 by Rupesh123 last updated on 22/Jun/23

Answered by MM42 last updated on 22/Jun/23

a=521(521^n −521^(n−1) +1)=521m  “521” is prime number.therefore “m”   must be a multiple “521”.  which is valid only for  “n=1”

a=521(521n521n1+1)=521m521isprimenumber.thereforemmustbeamultiple521.whichisvalidonlyforn=1

Commented by Rupesh123 last updated on 22/Jun/23

Perfect ��

Answered by Subhi last updated on 22/Jun/23

521((521−1)521^(n−1) +1)  521(521^n −521^(n−1) +1)  to be a perfect square  521^n −521^(n−1) +1 = 521^(2m+1)  , where m≥0                                                                                n≥1  or 521^n −521^(n−1) +1 = 521^(2k−1)  ,where k≤0                                                                                n≥1  521^(2m+1) −521^n +521^(n−1) =1  521(521^(2m) −521^(n−1) +521^(n−2) )=1  521^(2m) −521^(n−1) +521^(n−2)  = (1/(521))=(521)^(−1)   ∴ n−2≤0  ⇛ n≤2    n−1≤0      ⇛n≤1  m≤0  ∴ m = 0 , n = 1  521^(2k−1) +521^(n−1) −521^n =1  521(521^(2k−2) +521^(n−2) −521^(n−1) )=1  521^(2k−2) +521^(n−2) −521^(n−1)  = (1/(521))  n−1≤0  ⇛ n≤1 ⇛ n=1 ⇛ k = 1

521((5211)521n1+1)521(521n521n1+1)tobeaperfectsquare521n521n1+1=5212m+1,wherem0n1or521n521n1+1=5212k1,wherek0n15212m+1521n+521n1=1521(5212m521n1+521n2)=15212m521n1+521n2=1521=(521)1n20n2n10n1m0m=0,n=15212k1+521n1521n=1521(5212k2+521n2521n1)=15212k2+521n2521n1=1521n10n1n=1k=1

Commented by Rupesh123 last updated on 23/Jun/23

Perfect ��

Terms of Service

Privacy Policy

Contact: info@tinkutara.com