Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 193893 by Mastermind last updated on 22/Jun/23

Ques. 11       Let {H_α } ∈ Ω be a family of subgroup of  a group G then prove that ∩_(α=Ω) H_α  is also a  subgroup    Ques. 12        Using GAP, find the elements A, B and   C in D_5  such that AB = BC but A ≠ C.

Ques.11Let{Hα}ΩbeafamilyofsubgroupofagroupGthenprovethatα=ΩHαisalsoasubgroupQues.12UsingGAP,findtheelementsA,BandCinD5suchthatAB=BCbutAC.

Answered by Rajpurohith last updated on 22/Jun/23

(11) Let U=∩_α (H_α )  we need to prove that U is subgroup of G.  As e∈H_α    ∀α,  e∈∩_α  H_α   ⇒U≠∅.  let a,b ∈U   ⇒a,b∈H_α      ∀α  since H_α  is a subgroup for each α,  ab^(−1) ∈H_α     ∀α  ⇒ab^(−1) ∈(∩H_α )    ∀α  ⇒ab^(−1) ∈U   ∀a,b∈U  ⇒U=∩_α H_α   is a subgroup of G.

(11)LetU=α(Hα)weneedtoprovethatUissubgroupofG.AseHαα,eαHαU.leta,bUa,bHααsinceHαisasubgroupforeachα,ab1Hααab1(Hα)αab1Ua,bUU=αHαisasubgroupofG.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com