Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 194282 by alcohol last updated on 02/Jul/23

f(f(x)) = ax + b  1. show that f(ax+b) = af(x) + b  deduce f ′(ax + b)  2. Show that f ′(x) is a constant   hence deduce f

f(f(x))=ax+b1.showthatf(ax+b)=af(x)+bdeducef(ax+b)2.Showthatf(x)isaconstanthencededucef

Answered by Frix last updated on 02/Jul/23

f(x)=αx+β ⇒  f(f(x))=α^2 x+(α+1)β ⇒  a=α^2 _([⇒ a>0]) ∧b=(α+1)β ⇔ α=±(√a)∧β=(b/(1±(√a))) ⇒  f(x)=±(√a)x+(b/(1±(√a)))  f(ax+b)=f(α^2 x+(α+1)β)=  =α^3 x+(α^2 +α+1)β  af(x)+b=α^2 (αx+β)+(α+1)β=  =α^3 x+(α^2 +α+1)β  f′(ax+b)=α^3 =±a^(3/2)   f′(x)=±(√a)

f(x)=αx+βf(f(x))=α2x+(α+1)βa=α2[a>0]b=(α+1)βα=±aβ=b1±af(x)=±ax+b1±af(ax+b)=f(α2x+(α+1)β)==α3x+(α2+α+1)βaf(x)+b=α2(αx+β)+(α+1)β==α3x+(α2+α+1)βf(ax+b)=α3=±a32f(x)=±a

Terms of Service

Privacy Policy

Contact: info@tinkutara.com