Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 194522 by cortano12 last updated on 09/Jul/23

Answered by witcher3 last updated on 09/Jul/23

u=((x−5))^(1/3)   v=((7−x))^(1/3)   u^3 +v^3 =2p  ((v−u)/(u+v))=(1/2)(v^3 −u^3 )  ⇒(v−u)((1/2)(v+u)(u^2 +v^2 +uv)−1)=0  v=u⇒x−5=7−x⇒x=6  (v+u)(u^2 +v^2 +uv)=2    u^3 +v^3 +2uv(u+v)=2  ⇔2+2uv(u+v)=0  ⇒uv(u+v)=0⇒u=0,v=0,u=−v  u=0⇒x=5,v=0⇒x=7  u=−v⇒u^3 =−v^3 ⇒x−7=x−5..impossible  S={5,7,6}

u=x53v=7x3u3+v3=2pvuu+v=12(v3u3)(vu)(12(v+u)(u2+v2+uv)1)=0v=ux5=7xx=6(v+u)(u2+v2+uv)=2u3+v3+2uv(u+v)=22+2uv(u+v)=0uv(u+v)=0u=0,v=0,u=vu=0x=5,v=0x=7u=vu3=v3x7=x5..impossibleS={5,7,6}

Answered by Rasheed.Sindhi last updated on 09/Jul/23

((((7−x))^(1/3)  −((x−5))^(1/3)  )/( ((7−x))^(1/3)  +((x−5))^(1/3)  ))=((6−x)/1)  (a/b)=(c/d)⇔((a+b)/(a−b))=((c+d)/(c−d))  (((((7−x))^(1/3)  −((x−5))^(1/3) )+(((7−x))^(1/3)  +((x−5))^(1/3) ))/((((7−x))^(1/3)  −((x−5))^(1/3) )−(((7−x))^(1/3)  +((x−5))^(1/3) )))=(((6−x)+1)/((6−x)−1))  ((2((7−x))^(1/3)  )/(−2((x−5))^(1/3) ))=((7−x)/(5−x))  ((((7−x))^(1/3)  )/( ((x−5))^(1/3) ))=((7−x)/(x−5))  ((7−x )/( x−5))=(((7−x)/(x−5)))^3   (((7−x)/(x−5)))[(((7−x)/(x−5)))^2 −1]=0  ((7−x)/(x−5))=0 ∣ (((7−x)/(x−5)))^2 =1  x=7✓    ∣ 7−x=±(x−5)                    ∣ 7−x=x−5 ∣ 7−x=−x+5_(Absurd)                     ∣  x=6 ✓    I lost x=5 which is also a root!

7x3x537x3+x53=6x1ab=cda+bab=c+dcd(7x3x53)+(7x3+x53)(7x3x53)(7x3+x53)=(6x)+1(6x)127x32x53=7x5x7x3x53=7xx57xx5=(7xx5)3(7xx5)[(7xx5)21]=07xx5=0(7xx5)2=1x=77x=±(x5)7x=x57x=x+5Absurdx=6Ilostx=5whichisalsoaroot!

Commented by BaliramKumar last updated on 09/Jul/23

((7−x )/( x−5))=(((7−x)/(x−5)))^3   ((x−5 )/( 7−x))=(((x−5)/(7−x)))^3         ↑↓ = ↑↓  x = 5

7xx5=(7xx5)3x57x=(x57x)3↑↓=↑↓x=5

Commented by Rasheed.Sindhi last updated on 09/Jul/23

Thanx Baliram!

ThanxBaliram!

Commented by BaliramKumar last updated on 09/Jul/23

Welcome Sir

WelcomeSir

Commented by Rasheed.Sindhi last updated on 09/Jul/23

��

Answered by Frix last updated on 09/Jul/23

t=6−x ⇒ x=6−t  ((((1+t))^(1/3) −((1−t))^(1/3) )/( ((1+t))^(1/3) +((1−t))^(1/3) ))=t  (1−t)((1+t))^(1/3) =(1+t)((1−t))^(1/3)   Both sides =0 if t=±1 ⇒ x=5∨x=7  Both sides =1 if t=0 ⇒ x=6    If it′s not obvious:  (1−t)^3 (1+t)=(1+t)^3 (1−t)  t_1 =−1  (1−t)^3 =(1+t)^2 (1−t)  t_2 =1  (1−t)^2 =(1+t)^2   1−2t+t^2 =1+2t+t^2   −t=t  t_3 =0

t=6xx=6t1+t31t31+t3+1t3=t(1t)1+t3=(1+t)1t3Bothsides=0ift=±1x=5x=7Bothsides=1ift=0x=6Ifitsnotobvious:(1t)3(1+t)=(1+t)3(1t)t1=1(1t)3=(1+t)2(1t)t2=1(1t)2=(1+t)212t+t2=1+2t+t2t=tt3=0

Answered by Rasheed.Sindhi last updated on 09/Jul/23

  ((((7−x))^(1/3)  −((x−5))^(1/3)  )/( ((7−x))^(1/3)  +((x−5))^(1/3)  ))−1=((6−x)/1)−1  ((−2((x−5))^(1/3) )/( ((7−x))^(1/3)  +((x−5))^(1/3)  ))=5−x  ((2((x−5))^(1/3) )/( ((7−x))^(1/3)  +((x−5))^(1/3)  ))=x−5   ((7−x))^(1/3)  +((x−5))^(1/3)  =((2((x−5))^(1/3) )/(x−5))........(i)    ((((7−x))^(1/3)  −((x−5))^(1/3)  )/( ((7−x))^(1/3)  +((x−5))^(1/3)  ))+1=((6−x)/1)+1  ((2((7−x))^(1/3)   )/( ((7−x))^(1/3)  +((x−5))^(1/3)  ))=((7−x)/1)   ((7−x))^(1/3)  +((x−5))^(1/3)  =((2((7−x))^(1/3) )/(7−x))......(ii)  (i)&(ii):   ((2((x−5))^(1/3) )/(x−5))=((2((7−x))^(1/3) )/(7−x))  (((x−5))^(1/3) /( ((7−x))^(1/3) ))=((x−5)/(7−x))  ((x−5)/( 7−x))=(((x−5)/(7−x)))^3  or ((7−x)/(x−5))=(((7−x)/(x−5)))^3   (((x−5)/(7−x)))^3 −((x−5)/( 7−x))=0 or (((7−x)/(x−5)))^3 −((7−x)/(x−5))=0  ((x−5)/( 7−x))((((x−5)/(7−x)))^2 −1)=0 or ((7−x)/(x−5))((((7−x)/(x−5)))^2 −1)=0  ((x−5)/( 7−x))=0 ∣ (((x−5)/(7−x)))^2 =1or ((7−x)/(x−5))=0 ∣ (((7−x)/(x−5)))^2 =1  ((x−5)/( 7−x))=0 ∣ ((7−x)/(x−5))=0 ∣ (((x−5)/(7−x)))^2 =1  x=5  ∣  x=7 ∣ x=6

7x3x537x3+x531=6x112x537x3+x53=5x2x537x3+x53=x57x3+x53=2x53x5........(i)7x3x537x3+x53+1=6x1+127x37x3+x53=7x17x3+x53=27x37x......(ii)(i)&(ii):2x53x5=27x37xx537x3=x57xx57x=(x57x)3or7xx5=(7xx5)3(x57x)3x57x=0or(7xx5)37xx5=0x57x((x57x)21)=0or7xx5((7xx5)21)=0x57x=0(x57x)2=1or7xx5=0(7xx5)2=1x57x=07xx5=0(x57x)2=1x=5x=7x=6

Answered by horsebrand11 last updated on 10/Jul/23

    ((−2((x−5))^(1/3) )/(2((7−x))^(1/3) )) = ((5−x)/(7−x))     (7−x)((x−5))^(1/3)  = (x−5)((7−x))^(1/3)      (7−x)^3 (x−5)=(x−5)^3 (7−x)     (7−x)(x−5){(7−x)^2 −(x−5)^2 }=0     (7−x)(x−5)(2.(12−2x))=0

2x5327x3=5x7x(7x)x53=(x5)7x3(7x)3(x5)=(x5)3(7x)(7x)(x5){(7x)2(x5)2}=0(7x)(x5)(2.(122x))=0

Answered by Rasheed.Sindhi last updated on 10/Jul/23

((((7−x))^(1/3)  −((x−5))^(1/3)  )/( ((7−x))^(1/3)  +((x−5))^(1/3)  ))=6−x  ((a−b)/(a+b))=6−x  [ a=((7−x))^(1/3)  , b=((x−5))^(1/3)  ]  ((a−b)/(a+b))∙((a^2 +ab+b^2 )/(a^2 −ab+b^2 ))∙((a^2 −ab+b^2 )/(a^2 +ab+b^2 ))=6−x  ((a^3 −b^3 )/(a^3 +b^3 ))∙((a^2 −ab+b^2 )/(a^2 +ab+b^2 ))=6−x  (((7−x)−(x−5))/((7−x)+(x−5)))∙((a^2 −ab+b^2 )/(a^2 +ab+b^2 ))=6−x  ((2(6−x))/2)∙((a^2 −ab+b^2 )/(a^2 +ab+b^2 ))=6−x  (6−x)∙((a^2 −ab+b^2 )/(a^2 +ab+b^2 ))−(6−x)=0  (6−x)(((a^2 −ab+b^2 )/(a^2 +ab+b^2 ))−1)=0  6−x=0 ∣ ((a^2 −ab+b^2 )/(a^2 +ab+b^2 ))−1=0  x=6✓ ∣ ((a^2 −ab+b^2 )/(a^2 +ab+b^2 ))=1                 ∣ a^2 −ab+b^2 =a^2 +ab+b^2                  ∣ ab=0                 ∣ a=0 ∣ b=0                 ∣ ((7−x))^(1/3)  =0 ∣ ((x−5))^(1/3)  =0                 ∣  x=7✓       ∣  x=5✓

7x3x537x3+x53=6xaba+b=6x[a=7x3,b=x53]aba+ba2+ab+b2a2ab+b2a2ab+b2a2+ab+b2=6xa3b3a3+b3a2ab+b2a2+ab+b2=6x(7x)(x5)(7x)+(x5)a2ab+b2a2+ab+b2=6x2(6x)2a2ab+b2a2+ab+b2=6x(6x)a2ab+b2a2+ab+b2(6x)=0(6x)(a2ab+b2a2+ab+b21)=06x=0a2ab+b2a2+ab+b21=0x=6a2ab+b2a2+ab+b2=1a2ab+b2=a2+ab+b2ab=0a=0b=07x3=0x53=0x=7x=5

Answered by Rasheed.Sindhi last updated on 10/Jul/23

((((7−x))^(1/3)  −((x−5))^(1/3)  )/( ((7−x))^(1/3)  +((x−5))^(1/3)  ))=6−x=(((7−x)−(x−5))/((7−x)+(x−5)))  ((1−(((x−5))^(1/3) /( ((7−x))^(1/3)  )))/(1+(((x−5))^(1/3) /( ((7−x))^(1/3)  ))))=((1−((x−5)/(7−x)))/(1+((x−5)/(7−x)))) [x≠7]  (((x−5))^(1/3) /( ((7−x))^(1/3)  ))=((x−5)/(7−x))  ((x−5)/(7−x))=(((x−5)/(7−x)))^3   x=5,6................(i)  Similarly,  (((((7−x))^(1/3) /( ((x−5))^(1/3) ))−1)/((((7−x))^(1/3) /( ((x−5))^(1/3) ))+1))=((((7−x)/(x−5))−1)/(((7−x)/(x−5))−1))  [x≠5]  (((7−x))^(1/3) /( ((x−5))^(1/3) ))=((7−x)/(x−5))  ((7−x)/(x−5))=(((7−x)/(x−5)))^3   x=6,7...............(ii)  From (i) & (ii):  x=5 or 6 or 7

7x3x537x3+x53=6x=(7x)(x5)(7x)+(x5)1x537x31+x537x3=1x57x1+x57x[x7]x537x3=x57xx57x=(x57x)3x=5,6................(i)Similarly,7x3x5317x3x53+1=7xx517xx51[x5]7x3x53=7xx57xx5=(7xx5)3x=6,7...............(ii)From(i)&(ii):x=5or6or7

Commented by Frix last updated on 10/Jul/23

From ((...)/(7−x)) ⇒ x≠7

From...7xx7

Commented by Rasheed.Sindhi last updated on 10/Jul/23

Yes sir, you′re very right! I′ve modified  my answer.

Yessir,youreveryright!Ivemodifiedmyanswer.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com